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Smartphone-based colorimetric detection via
machine learning
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Nesrin Horzum d and Mehmet E. Solmaz *a,b

We report the application of machine learning to smartphone-based colorimetric detection of pH values.

The strip images were used as the training set for Least Squares-Support Vector Machine (LS-SVM)

classifier algorithms that were able to successfully classify the distinct pH values. The difference in the

obtained image formats was found not to significantly affect the performance of the proposed machine

learning approach. Moreover, the influence of the illumination conditions on the perceived color of pH

strips was investigated and further experiments were conducted to study the effect of color change on

the learning model. Non-integer pH levels are identified as their nearest integer pH values, whereas the

test results for integer pH levels using JPEG, RAW and RAW-corrected image formats captured under

different lighting conditions lead to perfect classification accuracy, sensitivity and specificity, which proves

that colorimetric detection using machine learning based systems is able to adapt to various experimental

conditions and is a great candidate for smartphone-based sensing in paper-based colorimetric assays.

1 Introduction

The technical capabilities of smartphones allow innovative
ideas to impact the fields of chemical and biological sensing,
microscopy and healthcare diagnostics.1,2 Especially the wide
availability of smartphone cameras and image processing
techniques permitted low-cost photometric and colorimetric
measurement setups for a broad range of chemical analyses.3,4

Colorimetric analysis of water for potassium5 and chlorine6

was performed by processing the images of water in the hue-
saturation-value (HSV) color space and fitting the non-linear
analyte function to the color ratio. Quantitative analysis of
color can also be performed using the Beer–Lambert law7,8

similar to spectrophotometers. Recently, colorimetric analysis
of paper based sensors has gained popularity due to their
reliable technology and simple color processing in various
color spaces.9 A simultaneous detection of nitrite and pH was
performed on images of the paper sensor with a smartphone
platform,10 while alcohol test strips were evaluated for

color change to accurately determine the saliva alcohol
concentration.11

In order to convert colors to analytical values, the above-
mentioned methods use JPEG images in different color spaces
and obtain a calibration curve. Since JPEG images are heavily
processed and compressed images, the final analytical data
cannot be completely trusted.12 Other methods to compensate
for the drawbacks of JPEG images include black and
white referencing,13,14 or using a simple gamma-correction
formula.15,16 Both referencing and gamma-correction are not
global methods and they cannot satisfy ambient light and
camera sensor variability that are needed to obtain a widely
acceptable colorimetric detection. Illumination and smart-
phone device independency can only be achieved using intelli-
gent systems, such as classifier algorithms.17–19 Moreover, as
the number of independent variables increase, such as the
case of multi-analyte paper based sensors, simple analytical
models fail.20 Therefore, we propose the utilization of the
machine learning algorithm, a type of Artificial Intelligence
(AI) that enables computing devices to learn without human
intervention, for smartphone-based colorimetric analysis of
pH values. The RGB values of pH strips with different values
in different image formats were used to train both the support
vector machine (SVM) and the least squares-support vector
machine (LS-SVM), which were later used to achieve over 90%
and perfect classification accuracies, respectively. Moreover,
additional tests using dual-illumination settings indicate
the ability of the proposed approach to generalize for more
versatile lighting conditions. No prior methodology on a
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smartphone sensing platform was able to demonstrate the
classification of colorimetric test strips using machine learn-
ing within diverse experimental conditions that include
multiple image formats. Our methodology shows how perform-
ance metrics known to computer scientists can be applied to a
chemical setting and proves that AI based methods have great
potential for detecting colorimetric changes in paper-based
colorimetric assays.

2 Experimental section
2.1 pH strip preparation

The pH values of the solutions from 0 to 14.0 were adjusted
using sodium hydroxide (NaOH) and nitric acid (HNO3).
Deionized water was used in the preparation of pH solutions,
and pH measurements were controlled with a pH meter
(HI 2223, Hanna Instruments, RI, USA) calibrated with standard
buffers, pH 4.0 (HI 7004) and 7.0 (HI 7007) prior to using pH
indicator strips (Merck, Germany). Additional dual-illumination
tests were performed using buffer solutions (4.0 to 9.0, Sigma-
Aldrich, USA). Each pH strip was immersed in the prepared pH
solutions for 5 seconds and allowed to dry on tissue paper.

2.2 Flowchart of the experimental procedure

The methodology of machine learning based colorimetric
detection is given in Fig. 1. The experimental procedure starts
with designing the type of colorimetric experiment for training
the machine-learning algorithm.

A dataset, which consists of numerous images, is needed as
the quality of machine learning training increases with the
number of input data. Therefore, we constructed a dataset con-
sisting of an adequate number of images captured under
several conditions. The images are then pre-processed by
cropping, rotating and color-correcting if necessary. The mean
RGB values are extracted from the sensing regions of the col-
orimetric assay and fed to the chosen machine learning classi-
fier. The machine learning algorithm provides performance
related graphics such as classification accuracy and a Receiver
Operating Characteristic (ROC) curve.

2.3 Experimental design

Two main sets of experiments have been designed to represent
controlled illumination settings. To provide imaging con-
ditions without any outside illumination, we firstly performed
“with apparatus” experiments on strips with pH 0 to 14.0,
where a 3D printed smartphone attachment was used to block
the ambient light (Fig. 2a). The strips with the same pH level
were imaged as a group of 4 under the flash of a smartphone
with 6 different orientations and alignments in order to
ensure that the training set includes the pictures with variable
rotations and illumination intensities (Fig. 2b). The luminance
on each strip is slightly different compared to the others due
to the positioning with respect to the camera flash. In the
second experiment, referred to as the “without apparatus”
experiment, for training the machine learning algorithm, the
apparatus was not used and the smartphone flash was
replaced with 3 different homogeneous light sources: sunlight
(S), fluorescent (F), and halogen (H). The main aim of this
experiment was to observe the effects of the illumination
source on the strip colors and the success of the machine-
learning algorithm under more versatile conditions. The
smartphone was positioned at the same height of the appar-
atus to maintain the same resolution conditions as those of
the previous experiment, which is crucial for the pre-proces-
sing step.

In addition to controlled illumination of pH strips with a
single light source, i.e., smartphone’s flash, we evaluated the
performance of the proposed machine learning algorithms
under lighting conditions using dual-illumination without
apparatus. Since the color of pH strips change significantly
among 3 illumination conditions (Fig. 3a), and most real-life
conditions involve one or more light sources, the success rate
of machine learning algorithms under more complicated light-
ing conditions must be sought. Dual-illumination conditions
were fluorescent–sunlight (FS), fluorescent–halogen (FH) and
halogen–sunlight (HS) combinations and pH buffer solutions
from 4.0 to 9.0 were used for the whole spectrum. Here, the
strips were imaged with indistinct orientation angles and posi-

Fig. 1 The experimental flowchart for smartphone based colorimetric
detection via machine learning.

Fig. 2 (a) The “with apparatus” experimental setup for colorimetric
detection of pH strips along with the X-Rite ColorChecker Passport for
color calibration and white balance correction; (b) 6 different pH strip
orientations for capturing images; (c) test strips with random orien-
tations and positions inside the smartphone field of view for dual-illumi-
nation tests.
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tions inside the field of view of the smartphone camera to
increase the variability of the machine learning test set
(Fig. 2c). The angles and positions were randomly selected
using a random number generator script in Matlab
(Mathworks, MA, USA).

Finally, additional tests were performed to evaluate the be-
havior of the proposed machine learning approach when strips
with non-integer pH values were fed to the classifier.

2.4 Image capture

In both experiments, an LG G4 (LG, South Korea) smartphone
handset in manual mode was used to capture images. The
white balance, ISO, shutter speed and focus settings were kept
constant throughout the experiments. The captured images
were stored in both JPEG and RAW file formats. In the first
experiment, each strip group shown in Fig. 2b was imaged

5 times for the distinct pH values ranging from 0 to 14.0 with six
different orientations to increase the size of the training set,
which results in a total of 450 images for each file format. In
the second experiment, each variation was only imaged once,
leading to 90 images for each light source. The total number
of images for each file format in the second experiment is 270.
Hence, the total number of images for each file format in the
second experiment is 270 as three different illumination
sources have been used.

2.5 Pre-processing

In this step, the strips captured under different illumination
conditions and orientations were processed to create an
output for the feature extraction step. The output consisted of
color matrices with a fixed size of 700 × 100 independent of
their original orientation in the image. The images were cap-
tured in both JPEG and RAW formats, and since the RAW
image files consist of raw sensor data from a digital camera,
additional steps need to be performed to display the RAW
images. Thus, they were firstly processed with freely available
DCRAW software,21 which maintains the linear relationship
between RAW images and radiance scene, to convert them to
the TIFF format (tagged image file format) as it was more con-
venient to work for further processing steps. The RAW images
were then white balanced and color transformed12 in order to
obtain RAW-corrected (RAWc) images. In the color correction
process, an X-Rite ColorChecker Passport (X-Rite PANTONE,
MI, USA), shown in Fig. 2a, was used as a calibration target
together with its spectral data. In addition, the color trans-
formation step needed to derive the transformation matrix,
which was computed using a CIE 1931 XYZ color space.
The ground truth XYZ tri-stimulus values were under D50
illuminants.22

The following steps were repeated for the JPEG, RAW and
RAWc formats which included rotating strips to the vertical
position and cropping the strips from their borders. To avoid
blurriness on the edges, each strip was updated by re-cropping
the inner part of the strip. The dependency of RGB values of
images on the file format can be clearly seen in Fig. 3b. The
JPEG, RAW and RAWc images of strips with pH levels ranging
from 0 to 14.0 exhibit different colors for the same pH value.
The JPEG images are heavily post-processed and have a non-
linear relationship with incoming light intensity, which makes
them impractical for the quantification of scientific data.12

Nevertheless, JPEG images are closest to the images obtained
by the human visual system since they are transformed using
color-matching functions. RAW and RAWc images are not
gamma-corrected,23,24 but they are linear, and present darker
colors.

2.6 Machine learning for colorimetric detection

2.6.1 Feature extraction. As shown in Fig. 3b, pH strips
consisting of four testing panels provide distinctive colors for
each pH value using JPEG, RAW and RAWc images. Hence, we
employ the mean values of R (red), G (green) and B (blue)
colors, respectively, to construct a 4 × 3 dimensional feature

Fig. 3 (a) The influence of illumination conditions on the color of the
sensor strip with pH of 12.0. Three different illuminants (sunlight, fluor-
escent, and halogen) were used to obtain a drastic change in the color
of a sample JPEG image; (b) strip images in JPEG, RAW, and RAWc
formats with pH levels from 0 to 14.0 captured in the “with apparatus”
experiment using only the smartphone flash light.
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matrix Xn(i, j ), for the ith testing panel and jth color of the nth
image, which is then mapped into a 12 × 1 dimensional vector
xn. The feature vectors for all images are then labeled such
that we form a training data set consisting of 15 different
classes, which corresponds to distinctive and discrete pH
values, i.e., pH values ranging from 0 to 14.0, for the two sets
of experiments.

2.6.2 Classification using a least-squares support vector
machine. The support vector machine (SVM) is a supervised
learning model which constructs an optimal hyperplane to dis-
tinguish data belonging to distinctive classes.25 While conven-
tional classifiers, such as the artificial neural networks, suffer
from the existence of local minima due to gradient descent
learning, the SVM employs inequality type constraints to opti-
mize the quadratic function of variables. The least squares for-
mulation of SVM, referred to as LS-SVM, has been introduced
with equality type constraints only where the hyperplane is
found by solving a set of linear equations.26 The LS-SVM has
also been exploited in the chemistry and chemometrics litera-
ture due to its relatively fast model computation using
Lagrangian multipliers.27 Therefore, in this paper we evaluate
the effectiveness of the extracted features, xn, in classifying
strips with different pH values using the LS-SVM classifier.

The SVM classifies an N-dimensional test input, x, into one
of the two different classes by defining a decision function:

f ðxÞ ¼ sign½λTgðxÞ þ b� ð1Þ
where g(x) maps the input space into a higher dimensional
space, λ is a N-dimensional vector consisting of weights and
b is a bias term.28 In order to compute the λ and b, the LS-SVM
solves the optimization problem:

min
λ;b;ef g

Jðλ; b; eÞ ¼ λTλ
2

þ γ

2

XN
i¼1

jeij2 ð2Þ

with equality constraints

yi½λTgðx iÞ þ b� ¼ 1� ei; i ¼ 1; 2; :::;M ð3Þ
where {xi, yi}Mi¼1 are M training input–output pairs, yi = ±1 rep-
resents the class label of xi and e = [e1, e2, …, eM]. Using the
Lagrangian multipliers α = [α1, α2, ..., αM],

Lðλ; b; e;αÞ ¼ Jðλ; b; eÞ
XM
i¼1

αi½ yi½λTgðxiÞ þ b� � 1þ ei� ð4Þ

the LS-SVM classifier is defined as:26

f ðxÞ ¼ sign
XM
i¼1

αiyiκðx; xiÞ þ b

" #
ð5Þ

where κ(x, xi) is the kernel function. In this paper, we employ

the radial basis function (RBF), κðx; xiÞ ¼ e�
jjx�xijj2

2σ2 , kernel and
σ control the width of the RBF function.

Once the LS-SVM classifier is fed with the extracted fea-
tures, one can estimate how accurately the designed LS-SVM
classifier distinguishes pH strips from an independent and a

more generalized data set using the leave-one-out, holdout or
k-fold cross-validation techniques.29 Among these, the k-fold
cross-validation is the most common approach, which ran-
domly divides the labeled feature sets into k equal sized
subsets, where the classifier is trained using the k − 1 subsets
(training data) and is tested using the remaining single subset
(testing data). This procedure is repeated k times, namely
k-folds, such that each subset is employed as the test set once.
For instance, 450/k randomly selected images out of 450 that
are captured in the “with apparatus” experiment are used as
the test set, whereas the remaining images are used for train-
ing the LS-SVM classifier. The same procedure is repeated
k times to satisfy k-fold cross validation. In this paper, we use
10-fold cross-validation since it provides the most unbiased
generalization error for machine learning problems.30

3. Results

The performance of the proposed machine learning approach
using the LS-SVM classifier for automatically identifying dis-
crete pH values is evaluated by computing classification accu-
racy (ACC), sensitivity (SEN) and specificity (SPC), which are
defined as:

ACC ¼ TrPsþ TrNg
TrPsþ TrNg þ FlPsþ FlNg

� 100 ð6Þ

SEN ¼ TrPs
TrPsþ FlNg

� 100 ð7Þ

SPC ¼ TrNg
TrNg þ FlPs

; ð8Þ

where TrPs and TrNg represent the amount of correctly identi-
fied true positive, e.g., number of pH 14.0 images that are cor-
rectly classified as pH 14.0, and true negative events, respect-
ively. On the other hand, FlPs and FlNg correspond to the
amount of incorrectly identified false positive and false nega-
tive events, respectively. The sensitivity and specificity statisti-
cally measure the performance of a classifier by computing the
proportion of positives and negatives that are correctly identi-
fied. Using the JPEG, RAW and RAWc images captured in both
experiments, referred to as “with apparatus” and “without
apparatus”, we obtained classification accuracy values for each
pH value. Moreover, the classification accuracy values of the
LS-SVM and the SVM have been compared for the experiment
“without apparatus” to show the effect of the classifier chosen
on the identification of pH values using smartphones.

As one can see from the bottom row of Fig. 4, the LS-SVM
achieves 100% classification accuracy for all pH values using
the JPEG, RAW and RAWc image formats captured in the “with
apparatus” experiment. This perfect classification performance
is anticipated since this experiment exploits 3D printed appar-
atus to isolate the smartphone camera from all external light
sources but the smartphone flash. Hence, the illumination on
the pH strips is guaranteed to be more robust to noise and the
machine learning algorithm is able to detect each pH value
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successfully. Furthermore, the LS-SVM provides almost 100%
classification accuracy (middle row of Fig. 4) for the “without
apparatus” experiment.

Although this experiment was performed under 3 different
illumination conditions (sunlight, fluorescent and halogen),
the LS-SVM classifier was still able to distinguish among pH
values. This proves the robustness of the proposed approach to
different light sources. In order to examine the effect of the
selected classifier algorithm on identifying the pH values, we
also employed SVM and computed classification accuracy
values (top row of Fig. 4) for the “without apparatus” experi-
ment. The SVM is far from perfect classification and performs
significantly worse than the LS-SVM, especially for the pH
values 3.0, 6.0, 7.0 and 8.0. Moreover, the effect of the image
format is not consistent across all pH values, which is in con-
tradiction with the general view that the RAW image format is
better than the JPEG format for the quantification of colori-
metric data.

The sensitivity and specificity depend on the value of the
threshold chosen to determine the “positive” and “negative”
test results. Therefore, we employ a receiver operating charac-
teristic (ROC) curve, which shows the relationship between the
sensitivity and 1-specificity for all possible threshold values.
A good classification test achieves rapidly rising sensitivity
whereas 1-specificity hardly increases until sensitivity is close
to one. Thus, one expects to obtain a larger area under the
ROC curve (AUC) for a good classifier, where AUC = 1 is
achieved for perfect classification.

In order to compare the sensitivity and the specificity of the
LS-SVM and the SVM classifiers, we obtained ROC curves for
the LS-SVM and the SVM classifiers using the JPEG, RAW and
RAWc images captured in the “without apparatus” experiment.
Fig. 5 shows that 1-specificity does not increase until the sensi-

tivity reaches its maximum value, which results in AUC = 1
indicating perfect classification for all pH values using the
LS-SVM classifier. On the other hand, the SVM provides ROC
curves where AUC = 0.9729, AUC = 0.9525 and AUC = 0.9606
are achieved using the JPEG, RAW and RAWc image formats,
respectively. The SVM algorithm does not provide perfect
classification since the AUC < 1 for all image formats. Hence,

Fig. 4 Automatic detection of pH values for the experiments referred to as “with apparatus” and “without apparatus”. Classification accuracy values
are shown for both the LS-SVM and the SVM using JPEG, RAW and RAWc image formats.

Fig. 5 ROC curves of the LS-SVM and SVM classifiers for the “without
apparatus” experiment where AUC = 1 is achieved using the LS-SVM for
all image formats and AUC = 0.9729, AUC = 0.9525 and AUC = 0.9606
are achieved using the SVM for the JPEG, RAW and RAWc image
formats, respectively.
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the type of classifier chosen for the colorimetric detection of
pH values highly influences the performance of the machine
learning approach. Moreover, the JPEG format provides better
than both the RAW and RAWc formats.

Thus, our study shows that one can increase the classifi-
cation accuracy, sensitivity and specificity and avoid the exten-
sive physical memory requirements of the RAW format by
using the JPEG format. Since the JPEG image format provides
100% classification accuracy for the “with apparatus” and
“without apparatus” experiments using the LS-SVM and per-
forms better than the RAW and RAWc image formats using the
SVM, we performed additional tests of the proposed algorithm
on the JPEG images captured under dual-illumination lighting
conditions. The strips were placed at random orientations and
positions inside the field of view of the camera for the pH
values 4.0, 5.0, 6.0, 7.0, 8.0 and 9.0. Thus, the success rate of
our approach under more complicated conditions, where mul-
tiple lighting sources and randomness exist, could be
assessed. For this, the LS-SVM classifier is trained using the
JPEG images captured in the “without apparatus” experiment,
in which only one light source is used per image. Then, the
trained LS-SVM classifier is tested using the JPEG images cap-
tured under the dual illumination conditions.

Fig. 6 illustrates the classification accuracy values of the
LS-SVM classifier using the pH values 4.0, 5.0, 6.0, 7.0, 8.0
and 9.0, where the combined lighting conditions consist of
the fluorescent–halogen, fluorescent–sunlight and halogen–
sunlight sources. One can see that the LS-SVM does not provide
perfect classification accuracy values for all lighting con-
ditions, which is expected since it was trained on single light
sources and is generalized or tested under dual-illumination

conditions. However, the classification accuracy values are still
above 80% especially for the fluorescent–halogen and fluo-
rescent–sunlight sources, which shows the effectiveness of our
algorithm in detecting pH values automatically under versatile
lighting conditions. In addition, the fluorescent–sunlight con-
dition provides the best performance compared to the others.
Nevertheless, if the LS-SVM classifier had been trained on the
images using dual-illumination, its performance would
increase, as the classifier could be able to learn the challenges
of more intricate lighting conditions.

Finally, one can increase the training data set such that the
resolution of the machine learning algorithm would be
capable of identifying non-integer pH levels. In other words, if
one wants to automatically identify the pH level of a test strip
with a fractional pH value, then the classifier has to be trained
using pH levels with appropriate precision, e.g. 0.1 precision to
identify pH levels 5.4 or 12.7. However, this would require per-
forming a vast number of experiments to account for all poss-
ible pH levels from the continuous range. Therefore, we
focused on the scenario where the test strip has a non-integer
pH value in order to evaluate the bias of the proposed method
for classifying fractional pH values when the algorithm is
trained with only integer levels. We obtained 8 JPEG images of
each strip with non-integer pH values, i.e., 2.2, 2.5, 2.7 and
11.2, 11.5, 11.7, from the acidic and alkaline ranges, respect-
ively, using the fluorescent and fluorescent–sunlight illumina-
tion conditions and employed the same training set described
in the “without apparatus” experiment.

Fig. 7 shows the classification performance of the LS-SVM
classifier for non-integer acidic and alkaline pH values using
fluorescent (F) and fluorescent–sunlight (FS) illumination con-

Fig. 6 Classification accuracy values of the LS-SVM classifier for the
JPEG images captured under dual-illumination conditions. The LS-SVM
is tested using the pH values ranging from 4.0 to 9.0, where the com-
bined lighting conditions consist of fluorescent-halogen, fluorescent-
sunlight and halogen-sunlight sources.

Fig. 7 (a) Percentage classification accuracy of non-integer acidic pH
values of the captured JPEG images under fluorescent (F) and fluor-
escent-sunlight (FS) illumination conditions; (b) percentage classification
accuracy of non-integer alkaline pH values of the captured JPEG images
under F and FS illumination conditions.
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ditions. The pH levels 2.2, 2.7, 11.2 and 11.7 are classified as
pH 2.0, pH 3.0, pH 11.0 and pH 12.0, respectively, for the fluo-
rescent lighting condition. This is not surprising since the
non-integer pH levels are identified as their nearest integer
neighbors. Moreover, the intermediate pH levels 2.5 and 11.5
result in 50% classification accuracy as the machine learning
algorithm is not able to decide which integer pH level to clas-
sify. For the tests performed under the FS condition, similar
but de-graded performance is observed since 100% classifi-
cation accuracy to the nearest integer pH levels is not achieved.
Yet, this outcome is consistent with the results discussed in
Fig. 6, where the effect of the dual-illumination conditions on
the classification performance is examined.

4. Conclusion

In this paper, we proposed a smartphone based machine
learning approach to automatically identify discrete pH values.
The proposed LS-SVM classifier is fed with the mean R, G, B
values extracted from the JPEG, RAW and RAWc images of the
pH strips, which were captured in three different sets of experi-
ments, “with apparatus”, “without apparatus” and dual-illumi-
nation tests. The LS-SVM classifier outperforms the SVM and
exhibits 100% classification accuracy, perfect sensitivity and
specificity (AUC = 1) for both the “with apparatus” and
“without apparatus” experiments using each image format.
Our proposed methodology was able to classify non-integer pH
values to the nearest integer, and yet has the capability of clas-
sifying non-integer pH values with more resolution levels as
long as the training set is created using appropriate precision.
Additional tests on the dual-illuminated pH strips and on the
non-integer pH levels prove that colorimetric detection using
machine learning is able to adapt to more versatile lighting
conditions and is a great candidate for fully automating the
detection of pH values without human intervention. The pro-
posed method to use AI based intelligent systems in the
quantification of colorimetric assays has the potential to supply
globally acceptable solutions for the variability issues such as
complicated illumination settings and proprietary smartphone
camera software. Future work would include a more diverse
training set including more illumination sources and handsets.
We believe that a smartphone app with embedded machine
learning algorithms could allow researchers and professionals
to train their handsets for various colorimetric assays (e.g.
blood, urine, diabetes) and apply it in resource-limited settings.
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