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a  b  s  t  r  a  c  t

A  smartphone  application  based  on machine  learning  classifier  algorithms  was  developed  for  quantify-
ing  peroxide  content  on  colorimetric  test  strips.  The  strip  images  were  taken  from  five  different  Android
based  smartphones  under  seven  different  illumination  conditions  to train  binary  and  multi-class  classi-
fiers  and  to  extract  the learning  model.  A  custom  app,  “ChemTrainer”,  was  designed  to capture,  crop,  and
process  the  active  region  of the  strip,  and  then  to communicate  with  a  remote  server  that  contains  the
eywords:
martphone
olorimetry
achine learning

ndroid application

learning  model  through  a Cloud  hosted  service.  The  application  was  able  to  detect  the  color  change  in
peroxide  strips  with  over  90%  success  rate  for primary  colors  with  inter-phone  repeatability  under  ver-
satile illumination.  The  utilization  of a  grey-world  color  constancy  image  processing  algorithm  positively
affected  the  classification  accuracy  for binary  classifiers.  The  developed  app  with  a Cloud  based  learning
model  paves  the  way  for  better  colorimetric  detection  for paper-based  chemical  assays.

©  2017  Elsevier  B.V.  All  rights  reserved.
. Introduction

The recent advances in smartphone technology propelled the
elds of chemical and biological sensing for broad range of ana-

ytes [1,2]. The technical difficulties are overcome with the help of
D printing technology and smart software [3–5]. The mainly used
lement of a smartphone is its camera that allows quantification of
olor images using colorimetry or photometry. Colorimetric analy-
is is a major chemical method using benchtop instruments such as
pectrometers or specially designed test strip readers. Chemists fre-
uently rely on color to follow through a reaction of interest, and yet
ave to use instruments to further extract quantitative data. Smart-
hone technology can help chemists for colorimetric analysis only

f the captured image can be quantified. One way  to achieve this
oal is to use smartphone spectrometers that rely on captured spec-

ral images and utilize Beer–Lambert Law to assess the absorbance
f colored liquids [6,7]. Colors of liquids can be quantified using
ue-Saturation-Value (HSV) color space of taken images and apply-
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zmir Katip Celebi University, Izmir, Turkey.

E-mail address: mehmete.solmaz@ikc.edu.tr (M.E. Solmaz).

ttp://dx.doi.org/10.1016/j.snb.2017.08.220
925-4005/© 2017 Elsevier B.V. All rights reserved.
ing non-linear fitting curve [8,9]. On the other hand, paper based
sensors that change color when dipped into an analyte solution
can be used for colorimetric analysis [10]. Nitrite and pH detec-
tion on a paper microfluidic sensor using a smartphone platform
was demonstrated [11]. Test strips for alcohol content in saliva was
evaluated for color change in various color spaces [12]. Photolumi-
nescence intensity level of quantum dots was  used to target glucose
in biological fluids [13].

Quantitative data extraction from colored images is always fol-
lowed by using a simple analytical model, such as fitting to singular
parameters (R-G-B) from various color spaces. However, several
problems exist when using analytical models to study concentra-
tion. Firstly, using JPEG images, which are greatly preprocessed
before viewing, is not preferred for scientific data acquisition and
processing [14,15]. Secondly, the methods to compensate for the
disadvantages of JPEG images, such as black-white referencing
[16,17], gamma-correction formula [18,19], and color referenc-
ing [20] cannot offer solutions to inter-phone repeatability and
smartphone proprietary software for JPEG processing. Moreover,

the success rate of simple analytical models decrease as the num-
ber of independent input parameters increase [21]. Multi-analyte
sensors, such as paper based microfluidics or test strips, require
extracting multiple analytical models to track each color change.

dx.doi.org/10.1016/j.snb.2017.08.220
http://www.sciencedirect.com/science/journal/09254005
http://www.elsevier.com/locate/snb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.snb.2017.08.220&domain=pdf
mailto:mehmete.solmaz@ikc.edu.tr
dx.doi.org/10.1016/j.snb.2017.08.220
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Fig. 1. (a) The peroxide test strips color chart showing the classification of colors
based on concentration. (b) Peroxide strip images in JPEG format for peroxide con-
tent  from 0.0 to 100 ppm showing secondary classes (11) with primary classes (6)
pointed with red arrows. (c) The experimental setup for colorimetric detection of
968 M.E. Solmaz et al. / Sensors and

herefore, the aforementioned problems can only be solved using
achine learning algorithms where the pre-obtained images are

sed to train a learning model, which can then automatically per-
orm colorimetric tests as new data arrives [22–24]. Despite JPEG
mages can degrade the computation of simple analytical models,

e recently showed that JPEG images show similar performance to
ther unprocessed formats (i.e. RAW images) when Least-Squares
upport-Vector Machine (LS-SVM) was used as the learning model
25]. Here we develop an application-based solution to colori-

etric testing of hydrogen peroxide (H2O2) strips using binary
LS-SVM) and multi-class (Random Forest) classifiers. The color
mages obtained from five different smartphones under seven dif-
erent illumination conditions were used to train the classifiers,
nd the learning model was extracted and embedded into a remote
erver that is accessed by custom designed Android app for testing
urposes using a Cloud-hosted service. The developed app and the

earning model were tested under several illumination conditions
nd on various handsets to verify the success of the training set for
nter-phone operability. No prior methodology was able to demon-
trate an app based colorimetric detection using machine learning
lassifiers trained in very diverse experimental settings. The pro-
osed methodology incorporating a Cloud based learning model
o quantify colorimetric strips shows great promise in supplying
ltimate solution to smartphone based colorimetric sensing.

. Experimental section

.1. Peroxide strip preparation

Stock solution of hydrogen peroxide (H2O2, Sigma–Aldrich)
500 ppm) was prepared in distilled water. The initial concentra-
ions used in the experiments were prepared by serial dilution from
he stock solution. Each strip was dipped into the test solutions for

 s, and allowed to dry on tissue paper for 5 s. It is noteworthy that
he accuracy of the color determination is pH-independent over
he pH range of 2–9 at room temperature. The color chart on the
urchased H2O2 test strips (Quantofix Peroxide 100) are shown in
ig. 1a. The test strips require tracking a single color as opposed
o multi-color paper sensors. There are 6 main classes for 0, 1, 3,
0, 30 and 100 ppm with clearly distinct colors. We  have prepared
2O2 solutions to obtain primary colors as well as secondary or in-
etween colors to increase the number of classes, which introduces

 more challenging classification problem. The primary colors are
ointed with red arrows in Fig. 1a and b. The secondary colors are
btained using H2O2 solutions with concentrations of 0.5, 2, 6.5, 20
nd 65 ppm, respectively.

.2. Experimental design and image capture

For machine learning training, we have designed an imaging
xperiment that involves controlled illumination conditions and
ultiple smartphones. Incandescent (I) and fluorescent (F) light

ulbs, and sunlight (S) are used individually and together to pro-
ide 7 different illumination conditions: I, F, S, IF, IS, FS, IFS for each
oncentration of test strip (Fig. 1c). Incandescent (Osram 60 W)
nd fluorescent (Philips 12 W)  light bulbs are suitably chosen to
ive warm (2700 K) and neutral colors (3500 K) while sunlight was
sed under shade with a clear sky (5000–6500 K). We  should note
hat the number of illumination sources can be increased to give

 much more variety of illumination conditions, however, explor-

ng the diversity of illumination sources is beyond the scope of this

ork. The distance between the smartphones and the test strips
ere kept constant at 16 cm and the light sources provided homo-

eneous illuminated field at 35◦ angle of incidence.
peroxide under incandescent, fluorescent and sunny illumination conditions. (For
interpretation of the references to color in this figure legend, the reader is referred
to  the web version of the article.)

Even though the illumination conditions are kept under con-
trol, smartphones brands have different internal proprietary JPEG
processing algorithms, which could result in a quite diverse train-
ing set. We  have used 5 different Android based smartphones that
are equipped with distinctive camera, optics and imaging software
(Table 1). Each smartphone was  positioned over the test strips at the
same height and the automatic imaging mode was used to acquire 1
image under each illumination and concentration. The smartphone
imaging settings such as color temperature, ISO, exposure time
and shutter speed were automatically adjusted by smartphone’s
internal software. The total number of images obtained for each
smartphone is 77 to result in 385 images for the whole data set.

2.3. Machine learning training

Both LS-SVM (binary class) and Random Forest (multi-class)
were used as the machine learning classifiers for training and
assessing the performance of app based colorimetric detection. To

create a training set for the classifiers, all the images captured on
five different smartphones with seven different illumination con-
ditions were transferred to the workstation in order to perform
pre-processing step in MATLAB environment. We  created different
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Table  1
The smartphones used to take images of peroxide strips of different colors for machine learning training.

Smartphone brand REEDER P10 SAMSUNG Galaxy Note 3 LG G4 HTC One M7 SONY Xperia Z1

5312 × 2988 2688 × 1520 3840 × 2160
f/1.8 f/2.0 f/2.0

m
o
c
o
t
R
a
H
t

d
c
t
t
[
c
I
a
g
a
i
f
w
o
g
[
a
s
o
c
s
L
l

2

w
i
r
m
fi
s
p

o
c
m
i
t
n
c
t

p
s
m
c
s

Fig. 2. (a) The communication infrastructure of the proposed smartphone based
Image resolution 4160 × 3120 4128 × 2322 

Optics f/2.0 f/2.2 

achine learning training sets for primary (6 classes) and sec-
ndary (11 classes) colors. The indicator pad on each strip was
ropped manually to mimic  the users who use the app during col-
rimetric tests. The cropped patches were in JPEG format that stores
he pixel information in terms of RGB (Red-Green-Blue) values. The
GB values were also converted to HSV and LAB color spaces, which
re more robust to illumination variation. The computed mean RGB,
SV and LAB values of the patches were used as the features fed to

he classifier algorithms.
In order to account for the effect of various illumination con-

itions, one should further improve the training set such that the
lassifier performs robustly for versatile lighting sources. One way
o increase the robustness is to achieve color constancy as it offers
o perceive the colors independent from color of the light source
26]. The key idea behind the color constancy is to calculate actual
olor in captured image disregarding the illumination conditions.
n other words, color constancy makes appearance of color stable
gainst illumination variations. Many methods like white-patch,
rey-edge and grey-world could be used for this purpose. In our
pplication, however, the grey-world method was performed as
t works under the assumption that deviation of the average color
rom grey is caused by the effects of the light source which is in line
ith the design of experiments in this study [27]. A traditional way

f applying the grey-world method is to calculate average red (�R),
reen (�G) and blue (�B) values of the image v = (�R + �G + �B)T

28]. Then, overall grey value for the image is calculated by taking
verage of these three values g = (�R + �G + �B)/3. The scale factors

 = (g/�R, g/�G, g/�B)T are multiplied with each color component to
btain color constancy for the patches. As a result of achieving color
onstancy, each primary and secondary classes were extended to
ix forms by transformation in three color spaces (RGB, HSV and
AB) including with and without the grey-world algorithm, which
eads to twelve training sets in total.

.4. ChemTrainer mobile app

We  developed a distributed system that enables multiple users
ith mobile devices to simultaneously classify test strips by tak-

ng their photographs. We use a message queue service to enable
emote servers running a classification algorithm to serve multiple
obile devices simultaneously (Fig. 2a). Our servers run a classi-

cation algorithm that decides which class a photograph of a test
trip belongs to. Our mobile device client application lets users take
hotographs of test strips and have the servers classify them.

The communication infrastructure of our system is based
n Advanced Message Queuing Protocol (AMQP). We  use a
loud-hosted RabbitMQ service running on CloudAMQP as the
essage-oriented middleware. This middleware enables us to eas-

ly set up and employ multiple computers as load-balanced servers
hat serve multiple mobile devices simultaneously over the Inter-
et. This architecture permits both servers and mobile device
lients to be behind firewalls as the connection is established
hrough the cloud service.

We use RabbitMQ to implement a Remote Procedure Call (RPC)
attern of communication between servers and mobile devices. The

erver computers register to the RabbitMQ service for the same
essage queue so that they can share the workload. A mobile device

lient connects to the RabbitMQ service for this message queue and
ends a request containing information about the cropped area of
sensing platform. A Cloud service is used to access the remote server that attains
the classification algorithm. (b) The activities and flow diagram of the developed
ChemTrainer app.

the photograph, along with a temporary unique queue identifier

that it starts listening to for the reply from a server. The RabbitMQ
service chooses the server to respond to this request using a stan-
dard load-balancing algorithm that aims to keep the servers equally
busy. The chosen server receives the request with the temporary
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Fig. 3. Classification accuracy values obtained from 10-fold cross validation of (a)
970 M.E. Solmaz et al. / Sensors and

ueue identifier, decides on the class that the test strip belongs to,
nd replies back to the mobile device via the temporary queue. This
ay, our system utilizes multiple servers to simultaneously classify
hotographs sent by multiple mobile device clients.

In our system, any Windows, Mac  OSX or Linux computer
hat runs MATLAB R2007b through R2016b and is connected
o the internet, can act as a server. The classification algorithm
mplemented in MATLAB communicates with RabbitMQ through

 standalone Java application based. The Java application registers
o the RabbitMQ service to receive requests from mobile device
lients. It then communicates with the running MATLAB script
hrough the Java MATLAB Interface and executes our classification
lgorithm. It sends the result back to RabbitMQ, which is forwarded
o the client mobile device.

Our mobile device client is implemented in Android and sup-
orts Android versions 4.0.3 (Ice Cream Sandwich) and above
Fig. 2b). The user either takes a new photograph (“Experiment”
utton) or loads a photograph from the gallery (“Load From Gallery”
utton). Then he/she crops the area of the photograph that con-
ains the test strip using an adjustable cropbox. After clicking the
Done” button, the application computes the average red, green
nd blue values for the strip and sends this information to the Rab-
itMQ service. The application shows the user a progress animation
ntil the result comes back from the server. Upon the arrival of the
erver’s response, the application displays the class that the test
trip belongs to.

.5. Mobile app testing

The ChemTrainer app was uploaded to 6 smartphones, i.e. one
xtra Android phone was utilized, and the users were first asked
o take pictures of primary and secondary peroxide strip colors in
heir offices under sunlight and a clear sky with automatic imaging

ode. Then the users were instructed to take the same pictures
ith their office light on. Hence, a diverse testing environment was

reated for the machine learning model with both single and dual
llumination settings. Each user took a total of 34 strip images for
rimary and secondary colors.

. Results

A metric used for evaluating the performance of used machine
earning algorithm is classification accuracy (CA), which is defined
s, CA = (TPos + TNeg)/(TPos + TNeg + FPos + FNeg) × 100, where TPos
nd TNeg are true positives and negatives, and FPos and FNeg are
alse positives and negatives, respectively. Based on the learning

odel developed with the training set, a strip image may  or may
ot yield to a correct class. CA was calculated using 10-fold cross
alidation technique, where 9 subsets were used for training the
lassifier, and the remaining subset was used as test data in a ran-
omized fashion. This procedure was repeated 10 times to obtain
he final CA values.

We have computed the CA values for primary and secondary
olor sets with 6 and 11 classes, respectively. Each color set was
lso applied with the grey-world color constancy image processing
lgorithm before reevaluating the CA values to mitigate the effect
f lighting conditions on the overall performance of the proposed
pproach. Fig. 3 shows the CA values obtained from the 10-fold
ross validation for all experiments.

For the primary color set, the LS-SVM achieves over 99% CA for all
eroxide contents using the RGB, HSV and LAB values as the feature

et without the grey-world color constancy method. Using the grey-
orld algorithm, the CA values reach 100%, which is anticipated

ince the colors on each test strip in the training set were modified
o have similar white balance setting. Thus, the LS-SVM is able to
the LS-SVM classifier and (b) the Random Forest classifier using images with and
without the grey-world (GW) algorithm.

achieve perfect classification accuracy independent of the feature
set. On the other hand, the CA values provided by the LS-SVM for the
secondary color set are slightly decreased, yet over 98% using the
RGB, HSV and LAB values as feature sets. This is due to the increased
number of classes compared to the primary color set. In addition,
the contribution of the grey-world algorithm to the performance
of the LS-SVM is similar when used with the RGB values for the
secondary color set.

For both the primary and secondary color sets, the CA values
obtained from 10-fold cross validation of the Random Forest clas-
sifier are relatively lower than the ones provided by the LS-SVM
classifier. However, the Random Forest classifier still performs well,
i.e., over 87% and 76% CA for the primary and secondary color
sets, respectively, where the RGB, HSV and LAB feature sets results
in similar performance in distinguishing peroxide levels. Further-
more, the application of the grey-world algorithm enhances the CA
of the Random Forest classifier for the RGB, HSV and LAB feature
sets. Therefore, the white balancing consistently improves the over-
all capability of both the LS-SVM and the Random Forest classifiers,
which proves the importance of accounting for versatile lighting
conditions.

Apart from the cross validation of the proposed machine learn-
ing approach, we also evaluated the performance of the LS-SVM
and Random Forest classifiers in testing the images provided by the
ChemTrainer app in Android smartphones. For this, the responses
from six users for each test strip were collected. The users com-
pared the correct ppm value of the test strip with the response from
the app and recorded the results to obtain classification accuracy
values. For the LS-SVM classifier, aside from correct and incorrect
results, the app accessible machine learning model may  not always

classify the calculated mean RGB, HSV and LAB features to a certain
class. This is another type of misclassification and the app responds
with “Unexpected” value in such a case. This is due to the one-vs-
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Fig. 4. ChemTrainer app test results for primary and secondary classes with (+) and
without (−) color constancy (grey-world) image processing algorithm for both clas-
sifiers. (a) The “Unexpected”, “Incorrect” and “Correct” data gives the performance of
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S-SVM learning model. (b) The Random Forest classification only give “Incorrect”
nd “Correct” results. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of the article.)

ll approach in testing a captured image by the smartphone app
ince the LS-SVM is a binary classifier. In other words, the LS-SVM
lassifier attempts to assign a test image in one of the classes by
hecking whether the test image belongs to the first class or not.
f the response is negative, the algorithm checks for subsequent
lasses one by one until the test image is assigned to a certain class.
f the test image could be classified into none of the classes, then
he result is labeled as “Unexpected”.

In Fig. 4a, the “correct” classification rate of the LS-SVM for
he primary color set using the mean RGB values is computed as
7.5% with and without the grey-world algorithm. In addition, the
ean HSV values from the primary class data leads to 73.6% classi-

cation accuracy whereas application of the grey-world algorithm

ncreases this rate to 84.7%. Similarly, the mean LAB values from the
rimary class data leads to 75% classification accuracy and appli-
ation of the grey-world algorithm results in 87.5% classification
ccuracy.
tors B 255 (2018) 1967–1973 1971

On the other hand, the secondary class RGB, HSV and LAB
datasets show relatively lower performance with over 50% suc-
cess rate, while the application of the grey-world image processing
algorithm consistently increases the success rate to 67.4%, 62.1%
and 57.6% using the RGB, HSV and LAB values as features, respec-
tively. The secondary class test sets demonstrate incorrect rates
of over 25% for the RGB and HSV values. However more than 92%
of those incorrect classifications belong to the neighboring class,
either below or above the target classes. For instance, the 3ppm
class was  mostly confused with 1–3 ppm or 3–10 ppm class. There-
fore, increasing the class number from six to eleven for the LS-SVM
classifier decreases the chances of achieving a high success rate
due to finer differences among peroxide levels while the applica-
tion of the grey-world algorithm to the training and the test set
increases the classification rate using the RGB, HSV and LAB fea-
tures. The unexpected rates of the LS-SVM classifier for both the
primary and secondary class test sets using the LAB features are
higher compared to the ones provided by the RGB and HSV values.

In Fig. 4b, using the primary class RGB data with the Ran-
dom Forest classifier results in lower performance, i.e., 76.4% and
69.4% before and after the application of the grey-world algo-
rithm, respectively, compared to the LS-SVM. On the other hand,
the primary class HSV and LAB values show much superior perfor-
mance, where the HSV feature sets lead to 88.9% and 90.3% accuracy
rate before and after the application of the grey-world algorithm,
respectively, compared to the LS-SVM results. The secondary class
HSV and LAB values also provide increased performance while sec-
ondary class RGB values show decreased performance compared
to the LS-SVM secondary classes. An important observation from
Fig. 4a and b is that the grey-world color constancy algorithm has
a similar and a positive effect on the primary and secondary HSV
and LAB results for both classifiers while the RGB features show
declined classification rates for the Random Forest classifier. In
other words, the color constancy algorithm persistently increases
the performance of the LS-SVM classifier, while it decreases the
CA of the mobile app test results and increases the CA obtained
from cross-validation for the Random Forest classifier. Therefore,
one should first carefully examine the effect of the grey-world algo-
rithm when used with a particular classifier.

Although the classification accuracy rates obtained from the
cross validation of both classifiers are well over 95% for the primary
and secondary color sets (Fig. 3), classification of user data provided
by the ChemTrainer app leads to a worse performance (Fig. 4). The
change in classification success rate is partly due to semi-random
conditions created by the ChemTrainer app users. For instance, the
training set was obtained in a controlled laboratory environment
that has uniform illumination conditions whereas the users tested
the Android app in their own  offices under distinctive lighting
sources independent of the conditions in the laboratory environ-
ment. The proprietary camera software was set to automatic mode
to freely adjust image settings, which are also independent of the
settings in the laboratory environment. Furthermore, the crop sizes
to calculate the mean RGB, HSV and LAB values for constructing
the training set in the laboratory environment were adjusted uni-
formly, whereas the crop sizes chosen by the Android app were not
uniform as the users were free to choose any crop size for the test
strip as long as it was smaller than or equal to the indicator area.
Hence, both the differences in the illumination conditions and the
differences in the crop sizes bring new information that the training
set formed in the laboratory environment does not involve, which
causes decreased generalization ability, referred to as the perfor-
mance of a classifier in classifying test patterns which were not

used during the training stage [29], of both classifiers when used
with the mobile app.
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. Conclusion

Herein, we proposed the ChemTrainer smartphone app that can
utomatically classify peroxide content based on the color of the
est strip using binary and multi-class learning models accessed
ia Cloud hosted service. The LS-SVM and Random Forest classi-
ers were fed with the mean RGB, HSV and LAB values of the test
trip image under various illumination conditions with and without
he grey-world color constancy algorithm. The learning model was
laced on a remote server where ChemTrainer can access to and
eceive a response from. The classification using the training data
ith 10-fold cross validation achieves over 95% accuracy while the
obile app user tests show as high as 90.3% correct classification for

rimary group with 6 classes. The misclassification rate increases
ith the number of classes as in the case of secondary group with

1 classes.
In this study, we illustrate that the proposed method to quantify

olorimetric test strips using a smartphone app based on machine
earning is a great prospect for any colorimetric assay with discrete
evels of analyte. The classification accuracy rate could be increased
y the use of additional handsets to form a more diverse and larger
raining set comprising of light sources with different color temper-
tures. Future work will focus on improving the machine learning
y the ChemTrainer app further for multiple parametric sensing
e.g. water quality, urine, blood parameters) for healthcare and
nvironmental monitoring in resource-limited settings.
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