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Abstract 

 

Conventional enzyme-based glucose quantification approaches are not feasible due to 

their high cost, specific working temperatures, short shelf life, and poor stability. 

Therefore, a portable platform, which offers rapid response, cost-efficiency, and high 

sensitivity, is indispensable for the healthcare of diabetes. In this study, we proposed a 

portable platform incorporating gold (Au) and silver (Ag) nanoparticles (NPs) with a 

smartphone application based on machine learning for non-enzymatic glucose 

quantification. The color change obtained from the reaction of small and large Au/Ag NPs 

with glucose was captured using a smartphone camera to create a dataset for the training 

of machine learning classifiers. Our custom-designed user-friendly smartphone 

application called “GlucoQuantifier” uses a cloud system to communicate with a remote 

server running a machine learning classifier. Among the tested classifiers, linear 

discriminant analysis exhibits the best classification performance (93.63%) with small 

Au/Ag NPs which demonstrates that incorporating Au/Ag NPs with machine learning 

under a smartphone application can be used for the non-enzymatic glucose quantification. 
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Introduction 

 

The diabetes epidemic will affect hundreds of millions of people in the coming years,1,2 

and the diagnostic remains as vital as it was in the past. Diabetes-related complications 

include both microvascular and macrovascular diseases that can damage the retina, skin, 

kidney, small and large vessels, central and peripheral nerves. Blood glucose is crucial in 

the monitoring of diabetes due to its potential as a biomarker. When the glucose level is 

routinely monitored and regulated in diabetics, complications can be avoided or at least 

delayed. Several systems, therefore, have been proposed to measure glucose which can 

be categorized into two classes: namely, optical and electrochemical biosensors.3 

Optical systems calculate glucose levels based on the measurement of photons.4 

Representative methods in this category are absorptiometry,5 reflectometry,6 

fluorescence7 and surface plasmon resonance.8 Electrochemical biosensors perform 

glucose measurement based on voltammetric, amperometric, or potentiometric methods 

which can be classified into enzymatic or non-enzymatic approaches regarding the 

presence of an enzyme in the measurement process. Glucose oxidase (GOx) is the most 

commonly used enzyme that catalyzes the oxidation of glucose into gluconic acid with 

high specificity producing hydrogen peroxide (H2O2) as a by-product. Hereby, the glucose 

concentration is measured by the amount of H2O2 production or O2 consumption during 

the oxidation reactions. However, enzyme-based glucose detection methods have 

drawbacks such as high cost, specific working temperatures, short shelf life, and poor 

stability. Therefore, as an alternative to enzyme-based methods, non-enzymatic methods 

are popular for glucose detection because of their low-cost, rapid response, and high 

sensitivity. For non-enzymatic detection, rapid advances in nanoscience and 

nanotechnology have led to the emergence of various nanostructures including non-
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biological electrode materials which have been gaining relevance due to their cost 

efficiency, stability, robustness, and having a tunable catalytic activity over the enzymes. 

Non-biological electrodes like metal oxide nanostructures (NiO,9 CuO,10 ZnO,11 MnO2,12 

CeO2,13 Co3O4,14 CoMoO4,15 MnCaO2,16) noble metal nanostructures (Au,17 Ag18), 

transition metal dichalcogenides (MoS2,19 WSe2,20 WS2
21), carbon-based nanomaterials 

(graphene,22 graphene oxide,23 carbon dots,24 carbon nanotubes25), layered double 

hydroxides,26,27 and magnetic nanoparticles (MFe2O4 (M=Mg, Ni, Cu),28 Fe3S4,29 

Fe3O4
30) have been used as nanozymes mimicking the enzyme activity. Among the 

nanostructures, silver nanoparticles (Ag NPs) and gold nanoparticles (Au NPs) offer 

advantages in biosensor applications due to their easy preparation, unique electrical and 

optical properties, and controllable size and stability which affect the sensitivity and 

selectivity of detection.31,32 Au NPs and Ag NPs have characteristic optical properties in 

the visible region depending on their dispersion and aggregation in a liquid.33,34 Therefore, 

the interaction between the NPs and glucose molecules leads to a color change, resulting 

in glucose level measurements with colorimetric approaches. Li et al. reported a non-

enzymatic method using gold nanostructures for glucose level detection forming a silver 

film via the silver mirror reaction (SMR).17 The Au NPs assisted SMR results in a core-

shell (Au-Ag) structure which can be verified with surface plasmon resonance by 

checking disappearance and appearance peaks at 520 nm and 410 nm for Au and Ag, 

respectively. Depending on the size and surface charge of the NPs, the color of the 

solution turns from red to yellow which allows the colorimetric analysis. The effect of the 

surface charge has been studied for Au and Ag nanostructures on colorimetric detection 

by synthesizing negatively charged polystyrene sulfonate-coated Au nanorods (PSS-Au 

NRs), citrate capped gold nanospheres (C-Au NSs), and positively charged cetyltrimethyl 

ammonium bromide capped Au NRs, quaternary ammonium capped gold nanospheres.18 
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The surface charge-dependent color change was attributed to the generation of Ag NPs 

which allows the redox reaction between Ag+ and glucose around the negatively charged 

PSS-Au NRs and C-Au NSs. Recently, Gao et al. have conducted colorimetric glucose 

detection by producing gluconic acid and H2O2 in the presence of oxygen using Au NPs 

as a catalyst.35 Subsequently, Ag NPs were added to the solution in which Ag NPs is 

etched with H2O2 produced in different concentrations. The yellow color of the Ag NPs 

either gradually faded, or the Ag NPs were entirely dissolved in H2O2, and the solution 

has turned completely red, due to the presence of Au NPs. This method enabled 

determining the glucose concentration based on a color scale. The selectivity was 

enhanced by using L-cysteine.36 

Furthermore, boronic acid derivatives are being used in glucose detection, due 

to their reversible binding ability with the glucose to form cyclic boronate esters.37 A non-

enzymatic method for colorimetric glucose determination was performed using Au NPs 

capped with 4-cyanophenyl boronic acid incorporated with β-cyclodextrin. An observable 

color change from red to blue with increasing glucose concentration was explained by the 

aggregation of the functionalized Au NPs due to the analyte induced inter plasmon 

coupling. Another example of the use of boronic acid derivative in glucose detection was 

reported by Li et al. who prepared 3-aminophenyl boronic acid-modified Au NPs by the 

citrate reduction.38 UV-Vis spectra results showed that with increasing the glucose 

concentration, the peak at 520 nm was disappeared, and the peak at 650 nm was increased. 

This was explained by the fact that a higher glucose concentration prevents aggregation 

of Au NPs. 

In the colorimetric analysis, various color spaces such as RGB (Red-Green-

Blue), HSV (Hue-Saturation-Value) and L*a*b* (Lightness, Green-Red, Blue-Yellow) 

can be used to extract the color information for glucose measurement.39-42 Color spaces 
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were employed depends on the applications. The HSV color space was used in alcohol 

detection43 while the L*a*b* was performed in pH measurement.44 On the other hand, 

the RGB was employed for the detection of chlorine in water45 and ripeness estimation 

of fruits.46 In the aforementioned studies, color space parameters were used to derive an 

analytical expression for qualitative and quantitative evaluations. However, camera optics 

and ambient light conditions have adverse effects on colorimetric analysis. Advanced 

algorithms like machine learning have been employed in the colorimetric evaluation 

process to overcome these problems.47,48 The machine learning algorithms have powerful 

utilities like automated decision-making and self-learning from the data. The advantage 

of machine learning algorithms lies in their flexibility and adaptability to new platforms 

such as smartphone-based systems. Recent advances in smartphone technology lead to 

emerge of many platforms capable of running sophisticated algorithms for sensitive and 

reliable colorimetric analysis. SPAQ application was developed to use histogram 

distribution for the detection of alcohol levels in saliva.43,49 Colorimetric Test Reader50 

application was used to detect pH, protein, and glucose values in an assay while the 

Colorimetric Plate Reader application was developed for ELISA tests.51 The univariate 

and multivariate analyses were run in PhotoMetrix52 to quantify the analytes while fuzzy 

classifier was used in FuzzyChem application for peroxide quantification.53 In 

GlucoSensing application, images, from the gallery or captured by the smartphone camera, 

were sent to the remote server which runs machine learning classifiers for colorimetric 

quantification of glucose concentrations.48 

Here, we develop an application-based solution to colorimetric testing of 

glucose using machine learning classifiers. This work demonstrates the advantageous 

combination of a smartphone-based non-enzymatic glucose sensing system and machine-

learning algorithms for the first time. The effect of different-sized Au NPs and Ag NPs as 
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the GOx mimic on glucose detection was investigated. After the classifiers were trained 

with the dataset created with the images captured under white LEDs illumination 

condition, they were run in the remoter server that can be accessed via the cloud service 

by our custom-designed Android application with a user-friendly interface that even non-

expert users may use without extensive training. The proposed methodology 

incorporating machine learning classifiers to quantify glucose concentration shows great 

promise in supplying the ultimate solution to smartphone-based colorimetric sensing. 

 

Materials and Methods 

 

Materials 

Hydrogen tetrachloroaurate (III) trihydrate (HAuCl4
.
3H2O, 99%) was purchased from 

Alfa Aesar; trisodium citrate dihydrate (Na3C6H5O7
.
2H2O, ≥99%), poly(vinyl 

pyrrolidone) (PVP; Mw: 10 kg/mol), silver nitrate (AgNO3, 99%), sodium borohydride 

(NaBH4, ≥98%), L-cysteine (C3H7NO2S, 97%), starch ((C6H10O5)n), D-galactose, (≥98%), 

D-glucose, (≥99.5%), D-maltose monohydrate, (≥99%), and D-xylose, (≥99%) were 

purchased from Sigma-Aldrich. All chemicals were analytical reagent grade and used as 

received. Ultrapure water (18.2 MΩ.cm-1 at 25 oC) used in all experiments was produced 

by a Human Corporation water treatment system. All glassware was initially cleaned with 

detergent and thoroughly rinsed with the water prior to use. 

 

Synthesis of NPs 

Synthesis of Au NPs: The colloidal dispersions of different-sized Au NPs were prepared 

by the reduction of HAuCl4 with NaBH4 using Na3C6H5O7 as a stabilizer at ambient 

temperature35 and the traditional Turkevich method54 using PVP as a stabilizer.55 In the 
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former method, aqueous solutions of HAuCl4 (10 mM, 0.5 mL) and Na3C6H5O7 (10 mM, 

0.5 mL) were mixed and completed to a total volume of 20 mL. Then freshly prepared 

NaBH4 (1.0 mM, 0.5 mL) was added into the solution under magnetic stirring at ambient 

temperature. The solution color turned immediately from pale yellow to cherry-red. L-

cysteine solution (0.1 mM, 0.4 mL) was added into the Au NPs dispersion to stabilize the 

colloids and the final solution was stored at 4 °C. In the latter one, after loading an 

aqueous HAuCl4 solution (0.24 mM, 200 mL) into a single-neck flask and heating to 

reflux by magnetic stirring, a solution of Na3C6H5O7 (0.34 M, 1.0 mL) was added to the 

flask. The solution was refluxed for 30 minutes and its color changed from pale yellow 

to light cherry-red. The resulting mixture was centrifuged at 6000 rpm for 1 h and re-

dispersed in 2.0 mL of water, then PVP solution (10 µL, 0.166 mM) was added into the 

dispersion to stabilize the colloids. The final solution was also stored at 4 °C. 

 

Synthesis of Ag NPs: Ag NPs were synthesized using NaBH4 as a reducing agent, 

Na3C6H5O7
35 and starch56 as stabilizers. In the first method, aqueous solutions of AgNO3 

(10 mM, 0.5 mL) and Na3C6H5O7 (40 mM, 0.5 mL) were mixed and filled with water to 

a total volume of 20 mL. A freshly prepared NaBH4 (1.0 mM, 0.5 mL) was added to the 

solution under magnetic stirring in an ice-water bath. The colorless solution turned yellow. 

Ag NPs in colloidal dispersion were stabilized by L-cysteine solution (0.1 mM, 0.4 mL) 

and the final solution was stored at 4 °C. In the second method, the starch solution was 

prepared as 2% (w/v) in boiling water and was used after cooling down to room 

temperature. 0.063 g AgNO3 and 0.021 g NaBH4 were separately dissolved in 50 mL of 

the starch solution. Then, the AgNO3 solution was added drop-by-drop into the NaBH4 

solution at an estimated rate of 0.2 mL/s under magnetic stirring. The solution color 

turned immediately from colorless to dark brown. The total volume of the colloid was 
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diluted with the water to be 130 mL and allowed to boil for an additional 30 minutes. The 

colloid was then cooled to room temperature and aged for 12 h to eliminate the residual 

NaBH4. The final volume of Ag NPs colloid was diluted 1:10 and used within 24 h. 

 

Characterization of the NPs: UV-Vis spectroscopy measurements were carried out using 

an Ocean Optics HR2000 fiber optic spectrometer (FL, USA). The morphological 

characterization of the NPs was carried out by scanning electron microscopy (SEM) at 

accelerating voltages of 3.00 kV and working distances of 1.7-3.9 mm in a Carl Zeiss 300 

VP microscope equipped with an energy dispersive detector. Colloids for SEM 

observation were prepared by dropping the diluted (1:10 in water) dispersions on small 

silicon wafers that were subsequently dried. The diameter of the NPs was measured over 

the SEM micrographs using Fiji-Image J software. The NPs obtained using Na3C6H5O7 

as stabilizers are named as large NPs (ℓ-Au NPs) and (ℓ-Ag NPs) while the others are 

named as small NPs (s-Au NPs) and (s-Ag NPs). Table 1 reports the synthesized NPs 

employed in this work with the corresponding particle sizes. 

 

Experimental design and image capturing 

The different volume ratios of Au and Ag nanoparticle dispersions were investigated 

through the absorbance mFeasurements to determine the appropriate amount for the 

sensing experiments. A series of 200 µL of Au NPs solution was added into the 700 µL 

of saturated water with oxygen in glass vials. Then, 300 µL of glucose solution with 

different concentrations (0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, and 9.0 mM) was spiked 

and kept for 5 minutes. Subsequently, 800 µL of Ag NPs solution was added into the 

mixture and incubated for 1h. Each solution was taken into the disposable cuvette and 

placed in a bench-type cardboard photo studio (40×40×25 cm) as illustrated in Fig. 1(a). 
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Images were captured in the cardboard photo studio that was painted white inside and 

black outside to minimize ambient light conditions. White LEDs were placed inside on 

the cardboard ceiling 22.5 cm over the samples for illumination. The images were 

captured using a smartphone camera (LG G6, 1/3.06 inc. sensor size with 1440×2880 

resolution, 1.12 µm pixel size) with a tripod located 11.5 cm away from the samples. Fig. 

1(b) shows the solutions with different glucose concentration levels ranging from 0 to 9.0 

mM. Ten consecutive images were captured for each concentration which leads to 110 

images for the dataset. This dataset was transferred to a computer for image processing 

and feature extraction in MATLAB (MathWorks, MA, USA) environment. The extracted 

features were then used in the training of machine learning classifiers in Python software. 

 

Machine learning classifiers 

Machine learning classifiers were trained to detect concentration levels of glucose in 

solutions based on color change and their performances were evaluated with classification 

accuracy scores. Linear discriminant analysis (LDA),57 bagging classifier (BC),58 and 

random forest (RF)59 classifiers showed the best performances in terms of the ability to 

detect glucose concentration. 

The LDA classifier uses the Bayesian rule to estimates the mean and variance 

from the data for each class. Ensemble learning methods that use several classifiers and 

aggregate their results are frequently preferred in machine learning.60 Ensemble learning 

methods are generally distinguished as bagging and boosting. BC is one of the ensemble 

learning methods which aggregates individual predictions by voting or averaging to 

obtain the final prediction. RF is also a kind of ensemble method. In standard trees, each 

node is divided using the best split among all variables, while in the random forest 

approach, each node is split using the best of a subset of randomly selected predictors at 
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that node. Therefore, the random forest classifier is more resistant to overfitting and uses 

only two variables: the number of variables in the random subset and the number of trees 

in the forest. 

To train the machine learning classifiers, the images in the dataset were 

captured using a smartphone camera in JPEG format with a size of 4160×3120. Although 

the size of the images is large, solutions occupy a small region in the image. The region 

of interest (ROI), which is the area of the color change, is cropped for feature extraction. 

In this study, color and texture features were extracted from the ROI to classify the 

concentration level of solutions with machine learning classifiers. Firstly, RGB values of 

the image were converted to HSV and L*a*b* to analyze the effect of color spaces on the 

concentration level. Then, mean, skewness and kurtosis values were calculated for R, G, 

B, H, S, V, L*, a*, b* color channels. Thus, 27 color features were obtained.  

After color features were extracted from the ROI of images, texture features 

were also extracted to increase the accuracy of machine learning classifiers. Texture 

features are statistical features obtained based on the intensity and color transition of 

images. Gray Level Co-Occurrence Matrix is one of the methods that is commonly used 

to extract features from texture analysis. Contrast, correlation, homogeneity and energy 

values of images were extracted as texture features. In addition to color and texture 

features, entropy and intensity values of the ROI were calculated. Totally, 33 extracted 

features for each of the 110 images in the dataset will be used in the training of machine 

learning classifiers. Representations of features with heatmap styles are given in 

supporting information (Figs. S1, S2 and S3). 

K-fold cross-validation is an important technique that is used to evaluate the 

performance of classifiers.61 In the K-fold technique, a dataset is split into K equal folds. 

K-1 folds are used for training while the remaining fold is used for testing. This process 
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is repeated K times until each fold is used as test data. Thus, K different accuracy values 

are obtained. The average of these values is calculated to evaluate the performance of 

classifiers. In this study, K is set to 10 as it was found to be adequate to avoid high bias 

and variance problems.48,62 

 

Smartphone application: GlucoQuantifier 

In the previous subsection, machine learning classifiers were trained and compared based 

on their performance. Here, we developed a custom-designed smartphone application, 

named GlucoQuantifier, that allows the users to quantify the glucose concentration using 

a smartphone camera. With a simple and user-friendly interface, GlucoQuantifier is 

capable of transferring images from a smartphone to a remote server that runs a machine 

learning classifier. To set communication between the smartphone and remote server, the 

Firebase cloud system is used as it supports both Android (smartphone) and Python 

(remote server). 

Among the tested classifiers, the LDA classifier was integrated with the 

GlucoQuantifier to quantify the glucose concentration of a new image as it outperformed 

the other classifiers in the training stage. When the user runs GlucoQuantifier to quantify 

the glucose concentration of the solution, the first page lets the user capture a new image 

using the smartphone camera or select an image from the gallery as shown in Fig. 2(a). 

After the image is selected, the colored area is cropped using an adjustable cropbox (Fig. 

2(b) and (c)). Then the user needs to tap the upload button to send the cropped image to 

the server (Fig. 2(d)). The LDA classifier in the server runs to decide the class of glucose 

concentration based on extracted features (Fig. 2(e)). The result comes back to the 

GlucoQuantifier via the Firebase and it is displayed on the screen as shown in Fig. 2(f). 
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Experimental Evaluation 

 

The objective of this work is to investigate the effect of Au and Ag NPs diameters on non-

enzymatic glucose detection using machine-learning algorithms. This section presents 

experimental evaluations of the proposed system for colorimetric quantification of 

glucose. We start with a discussion of different-sized descriptions of the Au and Ag NPs, 

before giving the analysis and comparison of the results.  

 

Characterization of different-sized Au and Ag NPs 

In general, Au NPs can catalyze the oxidation of glucose to gluconic acid in the presence 

of oxygen, producing H2O2 as a by-product. When Ag NPs are added to the solution, the 

generated H2O2 etches the yellow-colored Ag NPs to colorless silver ions and the red 

color of Au NPs appears. Therefore, Au/Ag NPs system enables a colorimetric glucose 

determination without requiring any enzymes or chromogenic reagents.35 Au and Ag NPs 

were synthesized by the NaBH4 reduction of gold and silver salts, respectively. Sodium 

citrate was used as a stabilizer at room temperature. To obtain smaller and more stable 

NPs, the syntheses were performed under heat-up conditions and using PVP and starch 

as the polymeric stabilizers. Increasing the reaction temperature not only provides the 

rapid reduction of Au or Ag ions but also their homogeneous nucleation afterward, 

allowing the formation of small-sized NPs.63,64 PVP and starch act as surfactants and the 

size controllers for Au and Ag NPs, respectively. Stabilization of the smaller NPs occurs 

through the interactions between the NPs and the hydrophilic groups of PVP (carbonyl 

oxygen and nitrogen of the repeating unit) and starch (ether oxygen and free hydroxyl), 

thus preventing aggregation.56,65 

The UV-Vis absorption spectra of the Au NPs, Ag NPs, and Au/Ag NPs are 
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given in Fig. 3(a) and (b). While the spectrum of the Au NPs has an absorption maximum 

nearly at 530 nm; the spectrum of the Ag NPs has an absorption maximum nearly at 405 

nm. Au/Ag NPs mixtures were prepared using different volume ratios of Au to Ag NPs. 

An appropriate volume ratio of Au to Ag NPs was selected as 1:4 through the absorbance 

measurements. The SEM micrographs presented in Fig. 3 (c) and (d) demonstrate that 

both Au and Ag NPs are spherical-shaped but agglomerated. The histograms in Fig. 3 (e) 

and (f) show the particle size distributions of the Au and Ag NPs, respectively. The 

average particle sizes calculated based on the SEM micrographs were 30±12 nm (ℓ-Au 

NPs) and 25±5 nm (ℓ-Ag NPs), respectively (see also in Table 1). 

Fig. 4(a) shows the absorption spectrum for the smaller Au and Ag NPs. The 

sharper absorption bands occurring at wavelengths of 520 nm and 400 nm arise from Au 

and Ag NPs, respectively. The absorption maxima are expected to shift towards the blue 

wavelength, higher frequency, and energies as a result of the increment in electron density 

of the particles when the particles decrease in size.66,67 SEM micrographs of the smaller 

Au and Ag NPs are demonstrated in Fig. 4 (b) and (c), respectively. Monodispersed 

spherical NPs were obtained with the narrower size distribution, as shown in Fig. 4 (d) 

and (e). The average particle size of s-Au NPs was 16±4 nm, while s-Ag NPs was 12±2 

nm (see also in Table 1).  

ℓ- and s-Au/Ag NPs as colorimetric probes for enzyme-free detection of 

glucose were used without pH control. The glucose concentrations were in the range of 

0.5-9.0 mM. The images of color changes with the increasing glucose concentrations were 

captured using a smartphone camera. Au NPs acted as a catalyst in the Au/Ag NPs system, 

and color change was obtained by the etching of the Ag NPs by H2O2 produced as a by-

product. It should be noted that surface charges play an essential role in the aggregation 

of the NPs.68 NPs with negative surface charges are critical in colorimetric determination 
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for electrostatic stabilization.69 Especially in this study, the etching of the aggregated Ag 

NPs by H2O2 becomes difficult, and the color change would be subtle for sensitive 

colorimetric detection. As seen on the SEM micrographs, ℓ-Ag NPs are aggregated more 

than s-Ag NPs in Fig. 3(d) and Fig. 4(c), respectively. Hence, the color change sensitivity 

was lower to determine the glucose concentration accurately for ℓ-Au/Ag NPs. Moreover, 

s-Au NPs contributed to the accuracy of the colorimetric detection due to their smaller 

size and less aggregation compared to the ℓ-Au NPs.70 

 

Machine learning-based colorimetric glucose detection 

Color and texture features were extracted as described in Machine learning classifiers. 

First, images were cropped to obtain ROI. Then 33 features were extracted from ROI to 

train machine learning classifiers. 

The performance of LDA, BC, and RF classifiers on ℓ-Au/Ag NPs and s-Au/Ag 

NPs was given in Table 2. They show that each classifier showed higher performance for 

s-Au/Ag NPs, also classifier performance improved for solutions on the 2nd day. The LDA 

has shown the highest accuracy in s-Au/Ag NPs with 93.63% and ℓ-Au/Ag NPs with 

90.00% on the second day. 

Accuracy (Eq. (1)), precision (Eq. (2)), recall (Eq. (3)) and f1-score (Eq. (4)) 

metrics were used to evaluate the performance of the machine learning classifiers. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 



16 

𝑓1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

True positive and true negative means that a model correctly predicts the 

positive and negative class, while false positive and false negative means that a model 

incorrectly predicts the positive and negative class. Accuracy gives a ratio of the number 

of correct predictions to the total number of predictions. Precision is defined ratio of true 

positive predictions to all positive predictions while recall is a ratio of true positive 

predictions to total true positives and false negatives. f1-score is calculated by the 

harmonic average of precision and recall and it has values in the range of 0 and 1. The 

average score of precision, recall, and f1 metrics for the LDA classifier of the 2nd day on 

ℓ-Au/Ag NPs and s-Au/Ag NPs are shown in Table 3. Tables for the 1st day are given in 

the Supplementary data (Tables S1 and S2). The performance of the LDA classifier on 

the 2nd day was also evaluated with confusion matrices which were given in Fig. 5 for 

both datasets where “True Label” defines the actual class while “Predicted Label” 

indicates estimated class by the classifier. Each row of the confusion matrix corresponds 

to an estimated class for the respective actual class. Confusion matrices of the LDA 

classifier on the 1st day are given in the Supplementary data (Figs. S4 and S5). The 

confusion matrix is used to evaluate the performance of classifiers. It compares the true 

label to the predicted label then visualizes the accuracy of the classifier. In Fig. 5(a) and 

(b), diagonal elements represent the number of predicted correctly samples. In Fig. 5(a), 

9 samples were predicted correctly as 0.1 mM, but 1 sample was predicted as 8 mM. The 

lda score plots is also given in the supplementary data (Fig. S6). In addition, the proposed 

system was integrated with a simple and user-friendly mobile application 

GlucoQuantifier to quantify the glucose concentration. Image is selected from the gallery 

or capture using the camera then the colored area is cropped and sent to the server that 



17 

runs machine learning classifier via Firebase to quantify the concentration level, the result 

comes back and it is displayed on the GlucoQuantifier. 

In addition, colorimetric assays were performed using s-Au/Ag NPs with 

samples of glucose, galactose, maltose, and xylose to evaluate the specificity of the 

proposed system. As shown in Fig. 6, the percent accuracy value is significantly higher 

for glucose compared to galactose, maltose, and xylose. It can be concluded that the s-

Au/Ag NPs are highly specific for distinguishing glucose from other sugars employed in 

this study. A detailed investigation dealing with the selectivity of the s-Au/Ag NPs 

towards a glucose standard solution in the presence of different interferents such as 

ascorbic acid, uric acid, dopamine, acetaminophen, L-tyrosine, and sodium chloride is 

underway. Different synthesis strategies using green reducing agents or substrates will be 

performed to control the size, shape, and surface charge of the nanoparticles. The effect 

of the weight ratio of reducing agents to metal precursors and the reaction time on 

producing the bimetallic nanoparticles with various sizes and dispersity will be 

investigated. In addition, surface functionalization of the nanoparticles with polymers, 

biomolecule, surfactants, dendrimers, and small molecules can be developed to improve 

the stability of the nanoparticles and to prevent their aggregation, and obtain target-

specific probe. Furthermore, the reliabilities of the non-enzymatic sensor will be 

evaluated by determining the glucose concentration in tears, urine, and interstitial body 

fluid which enables non-invasive detection. 

 

Conclusion 

 

Herein, a machine learning approach is proposed for enzyme-free colorimetric glucose 

detection based on different-sized Au/Ag NPs as the GOx mimic using a smartphone. The 
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general mechanism of Au/Ag NPs for the colorimetric detection relies on the interaction 

between surface functional groups of the NPs with glucose molecules, and the size-

dependent surface charge density of the NPs. In this study, large and small-sized Au/Ag 

NPs were employed for qualitative and quantitative colorimetric evaluation of assays. A 

dataset was created with images of assays containing different-sized Au/Ag NPs and 

glucose solutions at various concentrations to train machine learning classifiers. 

Moreover, a custom-designed smartphone application (GlucoQuantifier) was developed 

to communicate with the remote server running machine learning classifiers to determine 

the glucose concentration of the assay. Among the tested classifiers, 93.63% classification 

accuracy was reached with s-Au/Ag NPs which demonstrates a broad prospect for 

quantification of the colorimetric assays. To the best of our knowledge, this study is the 

first to link machine learning classifiers with Au/Ag NPs based on a smartphone 

application that provides a non-enzymatic quantitative analysis of glucose for rapid and 

portable on-site surveillance without the need for complex equipment. However, the 

synthesis of target-specific nanoparticles with high stability and selectivity, and the 

potential interferences in real samples, are still issues that need to be considered. Besides, 

illumination conditions, imaging distance/angle, smartphone brands are critical 

parameters to ensure the robustness of the sensing system. This study can be further 

extended by training the classifiers with closer concentration levels to improve the 

classification sensitivity, and employing more sophisticated methodologies including 

deep learning and transfer learning to increase the classification accuracy. 
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Table 1 The synthesized Au and Ag NPs with the corresponding particle size estimated 

from SEM micrographs 

NPs Reducing agent Stabilizer Synthesis conditions Diameter (nm) 

ℓ- Au NPs NaBH4 Na3C6H5O7 Room temperature 30±12 

s-Au NPs NaBH4 Na3C6H5O7 

and PVP 

Heated under reflux 16±4 

ℓ-Ag NPs NaBH4 Na3C6H5O7 Room temperature 25±5 

s-Ag NPs NaBH4 Starch Heated up to boiling 12±2 
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Table 2 Classification results on the ℓ and s-Au/Ag NPs datasets 

  Accuracy (%) 

 Classifiers ℓ-Au/Ag NPs s-Au/Ag NPs 

1st day 

LDA 88.18 90.00 

BC 80.00 85.45 

RF 79.09 79.09 

2nd day 

LDA 90.00 93.63 

BC 80.90 90.00 

RF 76.36 88.18 
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Table 3 Classification report on the ℓ-Au/Ag NPs and s-Au/Ag NPs dataset 

 ℓ-Au/Ag NPs s-Au/Ag NPs 

 precision recall f1-score precision recall f1-score 

0 mM 0.90 0.90 0.90 1.00 1.00 1.00 

0.5 mM 0.89 0.80 0.84 0.91 1.00 0.95 

1.0 mM 0.70 0.70 0.70 1.00 1.00 1.00 

2.0 mM 1.00 1.00 1.00 1.00 1.00 1.00 

3.0 mM 0.75 0.90 0.82 0.90 0.90 0.90 

4.0 mM 0.89 0.80 0.84 1.00 1.00 1.00 

5.0 mM 1.00 1.00 1.00 1.00 0.60 0.75 

6.0 mM 1.00 1.00 1.00 0.91 1.00 0.95 

7.0 mM 0.83 1.00 0.91 0.69 0.90 0.78 

8.0 mM 1.00 1.00 1.00 1.00 0.90 0.95 

9.0 mM 1.00 0.80 0.89 1.00 1.00 1.00 

Average 0.91 0.90 0.90 0.95 0.94 0.93 
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Figure Captions 

Fig. 1 (a) Laboratory type photo studio, (b) Color change of s-Au/Ag NPs at different 

glucose concentrations 

 

Fig. 2 Steps of colorimetric glucose detection with GlucoQuantifier. The homepage of 

the GlucoQuantifier is shown in (a) where the user can view the image from the gallery 

or take a new image with the smartphone camera to display on the screen as in (b). The 

adjustable cropbox is used in (c) to extract the ROI given in (d). The ROI is uploaded to 

the cloud for the quantification of glucose in (e) and the result is displayed in (f). 

 

Fig. 3 UV-Vis absorption spectra of the (a) ℓ-Au NPs and ℓ -Ag NPs, (b) mixed solution 

of ℓ-Au/Ag NPs at different volume ratios, SEM micrographs of the (c) ℓ-Au NPs and 

(d) ℓ-Ag NPs, the particle size distribution of the (e) ℓ-Au NPs and (f) ℓ-Ag NPs 

 

Fig. 4 UV-Vis absorption spectrum of the (a) s-Au NPs and s-Ag NPs, SEM micrographs 

of the (b) s-Au NPs and (c) s-Ag NPs, the particle size distribution of the (d) s-Au NPs 

and (e) s-Ag NPs} 

 

Fig. 5 Confusion matrix of LDA on the (a) ℓ-Au NPs and ℓ-Ag NPs dataset and (b) s-Au 

NPs and s-Ag NPs dataset 

 

Fig. 6 Specificity investigation of the s-Au/Ag NPs system for the detection of glucose. 

The percent accuracy values in response to 3 mM samples of different analytes.  
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Fig. 4 

  



33 

  

(a) (b) 

Fig. 5 
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