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21.1 Introduction

Nanozymes are nanomaterials possessing enzyme-like catalytic properties and distinctive
physicochemical characteristics (Wong et al., 2021; Chai et al., 2023; Wu et al., 2024). Since
2007, when Gao et al. reported that iron oxide (Fe;O4) nanoparticles exhibit peroxidase-
mimicking activity (Gao et al., 2007), numerous studies have focused on synthesizing new
nanozymes and comprehending their mechanisms of action (Huang et al., 2019a; Wang
et al., 2019a). With advancements in nanotechnology, an increasing array of nanomater-
ials with natural enzyme-mimicking activities, including peroxidase (POD), catalase
(CAT), oxidase (OXD), glucose oxidase, superoxide dismutase (SOD), laccase, ascorbate
oxidase, and glutathione peroxidase, has been reported (Huang et al., 2019a; Wu et al,,
2024; Xin et al., 2023).

Nanozymes can be classified as metallic (e.g., Au, Ag, Pt, and Cu) (Jv et al., 2010; Jiang
etal.,2012; Huetal.,, 2013; Jin et al., 2017; Mansur et al., 2022), metal oxide (e.g., ZnO, CuO,
MnO,, and CeO,) (Biparva et al., 2014; Xu and Qu, 2014; Qu et al., 2021; Mansur et al.,
2022), carbon-based (e.g., carbon nanotubes (CNTs), modified graphene oxide (GO-
COOH), and carbon quantum dots (CQDs)), and hybrid nanostructures (Song et al.,
2010a,b; Singh et al., 2018; Wong et al., 2021; Mansur et al., 2022; Li et al., 2023). Compared
to natural enzymes, which exhibit low thermal stability and operate within a limited tem-
perature and pH range, coupled with high production costs, the nanozymes offer low cost,
straightforward preparation, controllable activity, high stability, and durability (Wong
etal., 2021; Wu et al., 2023; Chai et al., 2023). Therefore, nanozymes have been widely used
in fields, such as biological imaging (Sharma et al., 2014; Liang and Han, 2020; Chai et al.,
2023), environmental remediation (Gao and Yan, 2016; Li et al., 2018; Chai et al., 2023), and
disease diagnosis and treatment (Duan et al., 2015; Jeyachandran et al., 2023).

Environmental problems unquestionably stand out as one of the primary challenges
confronting living organisms today. Such issues include heavy metals, pesticides, herbi-
cides, fertilizers, oil spills, airborne pollutants, industrial wastes, sewage, and organic
compounds (Khan and Ghoshal, 2000; Vaseashta et al., 2007). Environmental remediation
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is crucial in safeguarding human health and ecosystems, ensuring compliance with reg-
ulations, fostering sustainable development, and contributing to the overall well-being of
regions and the planet. A variety of materials can be employed for this purpose. The com-
plexity, high volatility, and low reactivity of the materials make the capture and degrada-
tion of environmental pollutants challenging. Therefore, recent studies have focused on
developing nanomaterials for new environmental remediation technologies (Tratnyek
and Johnson, 2006). Among them, nanozymes are considered excellent contributions to
the improvement of both traditional and advanced wastewater treatment processes
(Long et al., 2021). It has been demonstrated that nanozymes exhibit catalytic properties
similar to peroxidase and oxidase, which are involved in the natural breakdown of pollut-
ants by enzymes (Zhang et al., 2020; Chai et al., 2023). Nanozymes can overcome the lim-
itations of traditional enzymes in terms of production cost, recyclability, reaction rate, and
operating range (pH and temperature) (Huang et al., 2019a; Meng et al., 2020; He and
Liang, 2020). They are commonly used, particularly in the removal of persistent organic
compounds, such as phenolic compounds, pesticides, dyes, and organophosphates, due
to their effectiveness in environmental remediation (Diao et al., 2024).

21.2 Types of nanozymes used in environmental remediation

The classification of nanozymes offers a comprehensive framework for understanding the
diverse functional and structural attributes, facilitating environmental remediation. Wong
et al. classified nanozymes into four categories according to their mimicry of natural
enzyme behavior. These categories include type I nanozymes, functioning similarly to
active metal centers; type II nanozymes, predominantly exhibiting peroxidase-like
activity; type III nanozymes, comprising metal or metal oxides integrated with carbon
materials, MOFs, or bimetallic alloys; and type IV nanozymes, characterized by their
three-dimensional nanostructures (Wong et al., 2021). Here, we classified nanozymes
as metal-based, carbon-based, and hybrid nanostructures. Fig. 21.1 illustrates the wide-
spread utilization of nanozymes across diverse environmental monitoring and remedia-
tion applications.

In the class of metal-based nanozymes, there are transition metal compounds (metals
with oxygen, sulfur, or nitrogen) (Fang et al., 2020; Xie et al., 2019; Tang et al., 2021), metal
nanoparticles (gold, silver, copper, platinum or palladium, iridium) (Huang et al., 2021a; Li
et al., 2021a; Geng et al., 2021), and mono-, bi- and multi-metallic alloys (Zhou et al.,
2022a; Song et al., 2022a; Xu et al., 2020). An initial instance of such nanozymes is provided
by Fe30, nanoparticles, as reported by Gao et al. in 2007, demonstrating peroxidase-like
activity akin to the natural horseradish peroxidase (HRP) enzyme, which catalyzes the oxi-
dation of chromogenic substrates, including 3,3',5,5'-tetramethylbenzidine (TMB), 2,2'-
azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and o-phenylenediamine
dihydrochloride (OPD), in the presence of hydrogen peroxide (H,0O,). Cerium oxide
(Ce0O,) nanoparticles act as a nanozyme due to their similarity in structure and, primarily,
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FIG. 21.1 Types of nanozymes used in environmental monitoring and remediation.

their affinity to proteins in terms of biochemical properties, resembling iron ions. Their
catalase-like activity by decomposing hydrogen peroxide H,0, into O, and H,O, superox-
ide dismutase-like activity by converting O3 into O, and H,0,, and peroxidase-like activ-
ity by facilitating various peroxidation reactions make them multifunctional catalysts
(Wong et al., 2021).

Metal-based nanozymes have been used, especially in the detection and degradation
of toxic ions, such as Fe**/Pb**(Xie et al., 2019), Hg** (Fang et al., 2020; Cao et al., 2020),
As** (Xue et al., 2021), As®* (Zhong et al., 2019), and Cu®* (Luo et al., 2020); antibiotics, such
as kanamycin (Tang et al., 2021; Chen et al., 2020) and streptomycin (Wei et al., 2020), dyes
(Geng et al., 2021; Wang et al., 2023a), and phenolic compounds (Xu et al., 2020; Ma et al.,
2022); and pesticides (Sun et al., 2021a; Li et al., 2022a) and pathogens, such as Escherichia
coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus cereus (Mirhosseini
et al., 2020; Fuentes et al., 2021) by mimicking peroxidase, oxidase, and/or catalase.
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Carbon-based nanomaterials, including fullerenes and their derivatives, carbon quan-
tum dots, carbon nanotubes, and graphene oxide, among other nonmetallic nanozymes,
can mimic enzymes, such as peroxidase, catalase, and oxidase due to their structural and
catalytic properties. For example, it has been reported that increased electron density and
mobility in carbon quantum dots result in peroxidase-like catalytic activity. The modifi-
cation processes of C-based nanozymes (such as carboxyl groups and N or B atoms) have
been indicated to enhance the catalytic activities of nanozymes (Wong et al., 2021).

C-based nanozymes have been utilized in the determination of toxic ions, such as Cr®*
(Goswami et al., 2022) and AI** (Song et al., 2022b) and pathogens like Yersinia enteroco-
litica (Savas and Altintas, 2019) and E. coli (Loukanov et al., 2022). On the other hand, the
use of C-based nanozymes in detecting and degrading toxic organic molecules, such as
dyes, phenolic compounds, and antibiotics, remains an open area of research.

Hybrid nanozymes are composed of a combination of metal- and carbon-based nanos-
tructures that can mimic multiple enzymes. For instance, the adenine phosphate-Cu
complex exhibited noteworthy peroxidase, laccase, and oxidase mimicking activities
through the coordination of Cu ions with specific nitrogen sites (N3, N6, N7, and N9)
on the adenine phosphate. Furthermore, it is applied to the degradation of phenolic com-
pounds and used in colorimetric sensing methods for detecting H,O,, epinephrine, and
glutathione with high sensitivity and selectivity (Chai et al., 2023).

As an eco-friendly alternative, the fungal chitosan—copper nanocomposite (CsCu)
showed laccase activity to oxidize various phenolic compounds in synthetic and real
wastewater (Mekonnen et al., 2023). A detailed study by Wu et al. revealed that most lit-
erature focuses on copper-based laccase-mimicking nanozymes. For noncopper laccase
mimics, MnQO, ultra-thin film was proposed for the detection of o-, m-, and
p-dihydroxybenzene isomers and the direct differentiation of tetracycline and its deriva-
tives (e.g., chlortetracycline, oxytetracycline) (Wu et al., 2024).

The enhanced enzyme-like activity observed in metal, metal compound, and carbon-
based nanozymes stems from their expansive surface area, achieved via either size
(typically in the tens of nanometers range for metal or metal compound-based nano-
zymes) or intricate porous frameworks (characteristic of carbon-based nanozymes)
(Wong et al., 2021).

21.3 Applications of nanozymes in environmental treatment

Nanozymes represent a revolutionary approach to environmental applications, including
soil, air, and water treatment, by seamlessly integrating the benefits of traditional chemi-
cals and biocatalysts. These innovative catalysts offer unparalleled attributes, including
superior stability, recyclability, ease of manufacturability, cost-effectiveness, prolonged
storage stability, and environmental compatibility. As a result, they emerge as promising
candidates for diverse environmental applications spanning various domains. Specifi-
cally, nanozymes exhibit tremendous potential in ecological monitoring and remediation,
where their unique properties enable effective pollution mitigation and restoration of
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ecosystems. Furthermore, their versatility extends to toxic ion sensing, detection and deg-
radation of organic compounds, antibacterial treatments, and beyond, making them
invaluable tools for addressing pressing environmental challenges with efficiency and
efficacy.

21.3.1 Toxic ions

Cases of inorganic ion contamination have led to detrimental effects on both the environ-
ment and human health worldwide. In affected regions, ecosystems have been disrupted,
leading to the decline of biodiversity and loss of habitat for various species. Additionally,
contaminated water sources pose a significant risk to human populations, causing acute
and chronic health problems upon ingestion or exposure. Table 21.1 lists the commonly
used modified or functionalized metal-based, carbon-based, and hybrid nanozymes that
have been employed to enhance the binding affinity toward target ions, thus further
improving sensitivity in detection applications. These modifications involve the surface
functionalization of nanozymes with specific ligands, receptors, or functional groups tai-
lored to interact specifically with the target ions of interest, particularly for Hg** and Cr®*.
In a representative study, the initially low peroxidase-like activity of ferromagnetic parti-
cles modified with cysteine (Cys-Fe;0,4) because of Cys-Fe interaction has been enhanced
in the presence of Hg?*, forming a stronger coordination with Cys-Hg**-Cys. Thus, the
environmental nanosensor demonstrated high accuracy and selectivity in detecting trace
levels of Hg** in both environmental and biological fluids, achieving a detection limit
(LOD) of 5.9 pM (Niu et al., 2019). Mao et al. obtained exceptional catalytic activity by syn-
thesizing SA-Fe/NG, a peroxidase mimetic comprising single-atom iron anchored onto
two-dimensional nitrogen-doped graphene. The detection mechanism is based on the
use of 8-hydroxyquinoline (HQ) (as the inhibitor to prevent the oxidation of TMB, and
the recovery of the blue color through the interaction between Cr(VI) and 8-HQ. The opti-
mized colorimetric method, with an LOD of 3nM for Cr(VI) and high selectivity for various
other metal ions, has been successfully employed in detecting Cr(VI) in both tap water and
tuna samples (Mao et al. 2021). The primary detection method used is colorimetric, but
other techniques, such as electrochemical, optical, and surface-enhanced Raman spec-
troscopy (SERS), have also been employed. While POD mimics of nanozymes are predom-
inantly utilized in the detection of toxic ions, other nanozyme activities, such as OXD, dual
POD-OXD, CAT, SOD, phosphatase, and laccase-like activities, are also employed.
Although several nanozymes are used to detect toxic ions, only a few are employed in
degrading them. Wang et al. designed dendrimer-like macroporous silica nanoparticles
(DMSNs) @AuPtCo tri-metal nanozymes with peroxidase and catalase-like activities that
effectively removed (>95%) the excessive H,O, in H,O, sewage (Wang et al., 2020). Su et al.
examined how microbial sensitivity regulation mechanisms (MSRM) function in response
to common heavy metal pollutants (As** and Cr®") in paddy fields. They employed
nanoMn30,4-coated microbial populations (NMCMP) and found that Flavoisolibacter
and Arthrobacter are key bacteria involved in the remediation of As** and Cr®* pollution.
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Additionally, NMCMP were shown to enhance the reduction of Cr®* levels and suppress
the release and rapid oxidation of As** during the repair process of As,H,S; (Su et al.,
2022). A bimetallic mesoporous nanozyme called AgRu@p-CD co GO had a porous struc-
ture with hydroxyls and GO aromatic rings that effectively adsorb Hg** and CI~ from
water. The nanozyme achieved over 95.4% removal efficiency for Hg** and 93.8% for
Cl™ (Yan et al., 2022).

21.3.2 Organic pollutants

Organic pollutants pose a significant threat to water and soil quality, presenting a long-
standing challenge in their removal from these environments. Traditional methods for
wastewater treatment, including physical, chemical, and biological approaches, encoun-
ter various obstacles, such as the generation of toxic byproducts, high costs of production,
complex equipment requirements, nonselective oxidation reactions, and limited recycla-
bility (Singh et al., 2023). Nanozymes offer advantages for both detecting and degrading
organic pollutants present in wastewater and soil. We examined the types of nanozymes
employed in the remediation of antibiotic residues, dyes, phenolic compounds, pesti-
cides, and nano—/microplastics.

21.3.2.1 Antibiotic residues

Antibiotics are a class of compounds produced by microorganisms or synthesized chem-
ically, typically used to inhibit the growth of or kill bacteria. Nevertheless, once antibiotics
are introduced into animal or human systems, a significant portion of them is excreted via
feces and urine, retaining their original structures or metabolizing into byproducts. The
release of antibiotic residues into the environment poses risks, such as the proliferation
of resistance genes. Some antibiotics can potentially interact with nanozymes, particularly
if the nanozymes possess surface functional groups or catalytic sites that allow for chem-
ical interactions. However, the specific nature of this interaction would depend on various
factors, such as the chemical composition of the nanozymes, the structure of the antibi-
otics, and the conditions under which the interaction occurs. The utilization of nano-
zymes for detecting antibiotic residues is detailed in Table 21.2.

Tetracycline and kanamycin were mostly used in nanozyme-based antibiotic residue
detection. A highly effective portable sensor utilizing a hybrid Cu-doped-g-C3N, nano-
zyme has been developed for real-time visual monitoring of remaining tetracycline in
milk, achieved through a =n-x stacking-induced blocking mechanism. The Cu-doped-g-
C3N, nanocomposite demonstrated enhanced peroxidase-like activity (LOD: 31.51 nM)
compared to free Cu** and g-C3N, nanosheets, attributed to the synergistic effects of
Cu** and g-C3N, (Shen et al., 2022a). In addition to metal doping, incorporating recogni-
tion elements like aptamers can be utilized to develop aptasensors for the detection of
antibiotics. Alsulami et al. designed a target-specific aptamer-conjugated nanocomposite
comprising nonspherical gold nanoparticles and black phosphorus (BP-nsAu NPs), capa-
ble of detecting tetracycline with an LOD value of 90nM. The advantages of hybrid
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nanozymes, as well as the use of a free-radical scavenging ligand and rough surfaces (pro-
viding higher surface activation energy), were also highlighted (Alsulami and Alzahrani,
2024). Another recognition molecule, the molecularly imprinted polymer, is used for gen-
erating artificial cavities and binding sites for precise target recognition. Combining
molecular imprinting with enzyme mimics not only retains the signal amplification capa-
bility of nanozyme catalysis but also addresses their lack of specific recognition. The pro-
posed Fe;0,@MIP nanostructure possesses channels for substrate access, allowing it to
mimic peroxidase activity and catalyze the oxidation of TMB. The MIP shell captures tet-
racycline molecules, partially blocking the channels and hindering the TMB reaction. This
approach enables highly selective colorimetric detection of tetracycline with an LOD of
0.4pM. Additionally, the magnetic properties of the nanozyme allow for easy recovery
and reuse, making it suitable for recyclable sensing applications (Liu et al., 2022). While
kanamycin was detected at the picomolar level using bimetallic oxide (CoFe,0,) nano-
zyme (Chen et al., 2020), sulfamethazine was detected at the femtomolar level using bime-
tallic PtNi nanozyme (Song et al., 2022a).

21.3.2.2 Dyes

The printing and dye industry has led to a surge in wastewater containing organic dyes,
posing a threat to aquatic life due to its high toxicity and difficulty in biodegradation.
Nanozymes, popular catalysts, are increasingly used to degrade various types of dyes,
alongside other methods like adsorption. In general, two different catalytic reaction sys-
tems exist: nanozymes with peroxidase-like features are used to create Fenton-like sys-
tems for dye degradation, while they can also be integrated with advanced oxidation
processes (AOPs) like peroxydisulfate (PDS) and peroxymonosulfate (PMS) activation to
develop effective dye degradation (Diao et al., 2024). Specifically, PMS can be efficiently
activated by specific catalysts, such as Fe-, Co-, and Cu-based nanozymes to generate
reactive oxygen species (ROS), which play a crucial role in the degradation of organic pol-
lutants. For instance, FeBi-NC single-atom nanozymes with dual active sites for both cas-
cade catalysis and peroxymonosulfate (PMS) activation were fabricated by Chen et al. and
used for RB degradation (Chen et al., 2022a). Table 21.3 lists the nanozymes and their effi-
cacy in degrading dyes such as methylene blue (MB), rhodamine B (RB), methyl orange
(MO), and malachite green (MG). In general, nanozymes achieve over 90% removal effi-
ciency in dye degradation, and especially, Fe3O,-based nanozymes have efficiencies
exceeding 99%.

21.3.2.3 Phenolics

Phenols pose serious risks to human health and the environment. These risks include car-
cinogenic effects, hormonal disruptions, and increased environmental pollution. There-
fore, reducing and controlling the effects of phenols is of critical importance. Table 21.4
lists the types of nanozymes recently used for phenolic compounds. Studies have shown
that nanozymes are an effective method for both detecting and degrading phenols. Among
these compounds, 2,4-dichlorophenol is one of the most extensively studied. Laccase, a
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Table 21.3 Degradation of dyes by nanozymes.

Removal

Nanozyme Dyes Activity Efficiency (%)  Ref.

Metal-based  CoFe,04 MB POD 91.2 Wu et al. (2018)
MnO,- and SiO, @Fes0,4 MG POD 99.5 Jangi et al. (2020)
Copper nanozyme MO POD 93.0 Geng et al. (2021)
Ag-Fes04 Triarylmethane ~ POD >99.0 Wang et al. (2023c)

Hybrid Cu/H3BTC MOF Amidoblack Laccase 60.0 Shams et al. (2019)
Fe;0,@C-Cu’* MG Laccase 99.0 Li et al. (2020)
Pd@ZnNi-MOF/GO MB POD 95.0 Su et al. (2021)
Cu?*-HCNSs-COOH MB POD 80.7 Zhu et al. (2021a)
PANPs/PCNF MB POD, OXD  99.64 Dadigala et al. (2022)
Sulfur-doped graphdiyne  RB POD >98.0 Zhang et al. (2022a)
nanosheets
FeBi-NC SAzyme RB OXD 99.0 Chen et al. (2022a)
Fes0,@Gel Indigo carmine  POD 99.0 Zha et al. (2022)
CeO,@ZIF-8 MO POD 99.81 Yang et al. (2023a)

type of multicopper oxidase, is more commonly used in the reduction of phenolic com-
pounds. It exhibits the ability to convert molecular oxygen into water while simulta-
neously oxidizing substituted phenols and aromatic amines. Therefore, laccase-like
nanozymes are being explored as potential alternatives for laccase in practical applica-
tions. Based on the studies in the tables, the detection limit of phenols using nanozymes
typically falls within the micromolar range. Ferromagnetic nanoparticles are preferred
due to their abilities in the degradation of phenolic compounds. For instance, Jiang
et al. examined the catalytic properties of ferromagnetic chitosan nanozymes (called as
MNP@CTS), which promote the generation of ROS from H,0,.

The removal efficiency surpassed 95% within 5h. In addition, hybrid nanozymes gen-
erally come to the fore, combining the advantageous aspects of metals, metal oxides,
carbon-based materials, and polymers, and thus, higher efficiency and specificity can
be achieved.

21.3.2.4 Pesticides

Pesticides are organic compounds widely used in modern agriculture to control and elim-
inate pests (Wong et al., 2021; Prasad et al., 2021). Pesticides significantly threaten human
health and the ecosystem by causing environmental pollution and contamination in food
and water sources. Due to their high toxicity, pesticides should not exceed a certain con-
centration in drinking and surface waters (Prasad et al., 2021). Traditionally, liquid or gas
chromatography coupled with mass spectrometry (LC-MS, GC-MS) has been used to
detect pesticides. However, these techniques have limitations as they are not suitable
for rapid in-field detection of pesticides and involve challenging operating conditions
(Hernandez et al., 2005; Wong et al., 2021). Instead, nanomaterials mimicking enzymes,
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such as peroxidases, oxidases, and phosphatases, can be used to detect pesticides (Prasad
et al., 2021). In addition to detecting pesticides, bioremediation strategies have been
developed to reduce their environmental impact by transforming them into less toxic
forms and facilitating their degradation. Table 21.5 lists metal-based and hybrid nano-
zymes used for the detection and degradation of pesticides. The detoxification of pesti-
cides is provided by enzymes, such as oxidoreductases, hydrolases, and lyases (Zhu
et al., 2020; Sharma et al., 2018). In recent years, it has been identified that nanozymes
can be effectively utilized for monitoring and degrading pesticide residues in plants, soil,
and water samples. Nanozymes mimicking phosphatase-like activity, such as CeO, (Sun
et al., 2021a; Wei et al., 2019), are commonly used for pesticide degradation. Additionally,
nanozymes based on peroxidase-like activity, such as Fe;O,-based nanoparticles (Chen
et al., 2022b; Li et al., 2021c; Boruah and Das, 2020) or metal nanoparticles (Li et al.,
2022a; Weerathunge et al., 2019; Shah et al., 2021), are used.

21.3.2.5 Nano/microplastics

Nano- and microplastics are significant carriers of pollution initially found in oceans.
Their small size (<5mm), abundance, and widespread distribution facilitate ingestion
by marine organisms and their entry into the human body through food chains, posing
severe health risks. Due to their challenging metabolization, un-excreted nano- and
microplastics accumulate in the body, causing organ damage and diseases. Thus, remov-
ing and degrading these particles from water resources is crucial. Recently, nanozymes
have been utilized for the degradation of nano- and microplastics (Diao et al., 2024; Zan-
dieh et al., 2023). In a representative study, Kang et al. successfully conducted catalytic
oxidation of microplastics by encapsulating manganese carbide nanoparticles within heli-
cal nitrogen-doped carbon nanotubes (Mn@NCNTs) through pyrolysis. Mn@NCNTs were
both able to oxidize cosmetic plastic microbeads by catalytically activating PMS to gen-
erate reactive free radicals, achieving a removal rate of 50%, and the degradation interme-
diates could serve as nutrients for aquatic algae without harming microorganisms (Kang
et al., 2019). Zandieh et al. showed that use of Fe;0, nanoparticles, which is among the
most studied nanozymes with peroxidase-like activities, allowed it to degrade microplas-
tics with almost 100% efficiency when heated close to their melting temperature. Addi-
tionally, Fe3sO, nanoparticles were highlighted for their ability to be easily recycled
thanks to their magnetic properties and excellent stability (Zandieh and Liu, 2022). In a
supporting study poised to expand the application of artificial enzymes in combating
microplastic pollution, researchers concentrated on merging the magnetic attributes of
bare Fe;0, nanoparticles with nanozyme technology to achieve near-complete removal
and degradation of microplastics (Palliyarayil et al., 2023).

21.3.3 Pathogens

Infectious diseases are known to be responsible for more than a quarter of global deaths,
and the primary causes are bacteria and viruses. Contaminated food and water are
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common sources of transmission of these diseases. As a result, the first step in managing
infectious diseases is to identify pathogenic microorganisms. The use of nanozymes in
biosensing has experienced significant growth in recent years, driven by advances in
the development and synthesis of various nanozyme-based systems specifically designed
for the detection of bacteria and viruses. Table 21.6 provides a summary of recently uti-
lized metal-based, carbon-based, and hybrid nanozymes for the detection and degrada-
tion of various pathogens.

Nanozyme-mediated pathogen detection utilizes a range of detection modes, includ-
ing colorimetric, fluorescence, and electrochemical detection. Savas et al. utilized gra-
phene quantum dots (GQDs) (<5nm) for the electrochemical detection of the
Y. enterocolitica. The electronic interactions, enhanced electrical conductivity, and cata-
lytic surface area between the Au electrode and GQDs were emphasized. Detection of the
analyte was achieved through H,0, reduction by GQDs and hindered electron transfer
due to formation of the antigen—antibody complex (Savas and Altintas, 2019).

Nanozyme technology finds application in laboratory research methods like PCR and
enzyme-linked immunosorbent assays, as well as point-of-care devices such as electronic
biosensors and lateral flow detection strips, all of which serve as indicators for pathogen
detection and identification (Songca, 2022). Recently, a novel label-free and dual-readout
lateral flow immunoassay utilizing a multifunctional nanocomposite (Fe;0,@PDA@Pt)
with magnetic-adhesion-color-nanozyme properties was reported by Dou et al. (2022).
Fe3;0, magnetic core simplified separation processes and surface adherent polydopamine
(PDA) films demonstrated robust adhesion to E. coli and provided colorimetric detection
signal, and platinum nanoparticles (Pt NPs) acted as nanozymes to generate an additional
catalytic signal for an LOD of 10°-10 CFU/mL. In another study, a nanozyme chemilumi-
nescence paper test was developed for the rapid and sensitive detection of the SARS-CoV-
2 antigen. The Co-Fe@hemin-peroxidase nanozyme that facilitated chemiluminescence
similar to natural peroxidase HRP, thereby enhancing the immune reaction signal and
achieving the LOD of 0.1ng/mL (Liu et al., 2021c).

In addition to the detection of pathogens, nanozymes are also being investigated for
their potential as antibacterial agents. Zhou et al. defined the nanozyme-based antibac-
terial alternatives as “nanozybiotics” (Zhou et al., 2022b). For instance, a single-atom
nanozyme based on Pt single atoms modified carbon nitride nanorod (SA-Pt/g-C3N,-K)
demonstrated excellent biocompatibility and achieved a killing efficiency of over
99.99% against gram-negative bacteria (Fan et al., 2022). Apart from their antibacterial
effects, nanozymes have emerged as a solution for preventing and removing marine bio-
logical fouling. Haloperoxidase mimicry, which involves the catalytic oxidation of halides
by H,0, to form hypohalous acids, has been reported in CeO,-x nanorods (Herget et al.,
2017), and chromium single atoms coordinated on carbon nitride (Cr-SA-CN) (Luo et al.,
2022a).

While nanozymes are typically categorized for environmental applications related to
toxic ions, organic pollutants, and pathogens, they are also utilized in air purification (Elk-
omy et al., 2024) and glucose biofuel cells (Guo et al., 2020).
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21.4 Mechanisms of nanozymes

Nanozymes, mimicking enzymes like catalase, superoxide dismutase, peroxidase, and
laccase—prominent in living organisms—are frequently employed for detecting and
degrading heavy metals, along with organic pollutants like dyes, pesticides, and drugs.
The catalytic performance of nanozymes can be impacted by factors like composition,
size, morphology, solution pH, surface coverage, and surface chemistry (Navya and
Daima, 2016; Singh et al., 2023).

The mechanisms of action for these nanozymes can be categorized as follows.

21.4.1 Catalase-mimicking functionality

Catalase is an enzyme that catalyzes the breakdown of H,0O, into water and oxygen. First, it
was reported that the amine-terminated PAMAM dendrimers-Au nanoclusters mimic cata-
lase activity (Liu et al., 2017). Subsequently, it has been noted that CeO,, platinum, and man-
ganese oxide nanoparticles exhibit nanozymes with catalase-like activity. At the molecular
level, the nanozymes exhibiting catalase-like behavior occur through mechanisms, involving
bi-H,0, association, acid-like dissociation, or base-like dissociation (Guo et al., 2020).
Different metal-oxide nanozymes exhibit catalase-like activity following one of the three
proposed mechanisms. For instance, the catalytic activity of cobalt oxide nanoparticles can
be better explained through the bi-hydrogen formation mechanism. In the case of CeO,
nanoparticles, the process involves the initial adsorption and reaction of H,O, on the nano-
particle surface, converting oxygen and CeO, into H,-CeO,. Subsequently, upon reactingwith
another H,O, molecule, it further converts into water (Thao et al., 2023; Wang et al., 2019c).

2Ce* + H,0,—2Ce®*" + 0,+2H*
2Ce** + H,0,+2H* — 2H,0 +2Ce**

21.4.2 Superoxide dismutase-mimicking functionality

Superoxide radicals are fundamental components of ROS produced as byproducts during the
metabolism of living systems. Superoxide radicals are closely associated with oxidative stress
and readily convert into other ROS forms. Superoxide dismutase, an enzyme found in plants,
animals, and microorganisms, exhibits a potent antioxidant property by catalyzing the con-
version of superoxide anion radicals into H,0, and oxygen (Thao et al., 2023). Since the report
by Krusic and colleagues in 1991 (Krusic et al., 1991), stating that nanomaterial consisting of
60 carbon atoms possesses free-radical scavenging properties, nanozymes mimicking super-
oxide dismutase, mainly composed of transition metals, such as copper, iron, and cerium,
and elements, such as nitrogen, oxygen, carbon, and sulfur, have been produced (Thao
etal., 2023). The various carbon-based nanomaterials, including graphene oxide (GO), car-
bon nanotubes (CNTs), and carbon dots (CDs), have demonstrated superoxide dismutase-
like activities. Among them, CeO,, trimanganese tetraoxide (Mn30,), and manganese dioxide
(MnO,) nanoparticles effectively mimic the superoxide dismutase. The catalytic activity
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mechanism of nanozymes, which mimics the superoxide dismutase exemplified by CeO,
nanoparticles, is explained through the electron transfer model (Celardo et al., 2011). In this
model, the O molecule briefly binds to the reduced oxygen vacancy sites, releasing H,O,
through the absorption of two protons and the subsequent transfer of one electron from
Ce*". In another theory, the superoxide dismutase activity of CeO, nanoparticles is attributed
to defect regions forming at the interface due to the adsorption of HO5 species onto the nano-
particle surface, leading to H,O, and oxygen (Wang et al., 2019c¢).

21.4.3 Peroxidase-mimicking functionality

Peroxidase enzymes facilitate the oxidation of an organic substrate by serving as an elec-
tron acceptor for H,O,. Since the initial report by Gao et al. in 2007 on the peroxidase-
mimicking capability of Fe;0, nanoparticles, various metal oxides, conductive polymers,
metal-organic frameworks (MOFs), and carbon-based nanomaterials have been demon-
strated to mimic peroxidase activity (Liu et al., 2021b). Nanozymes mimicking peroxidase
exhibit catalytic activity through Fenton reactions, Fenton-like reactions, or electron
transfer mechanisms, as Adeniyi et al. reported (Adeniyi et al., 2020). The peroxidase-
mimicking activity of Fe;O, nanoparticles has been associated with the production of
OH® and O° /HO" radicals due to the released metal ions. Wang et al. suggested that
the degradation and mineralization of organic molecules, such as rhodamine B, are a
result of the radicals generated by Fe;O, nanoparticles (Wang et al., 2010). In subsequent
studies, researchers suggested that peroxidase-like activity is more attributed to reactions
occurring on the nanoparticle surface than to the released metal ions. Supporting this
hypothesis, one study suggested the peroxidase-like activity of vanadium pentoxide nano-
tubes for surface properties rather than free orthovanadate anions (André et al., 2011).

21.4.4 Laccase-mimicking functionality

Laccases are sourced from diverse organisms, such as plants, insects, fungi, bacteria, and
lichens. As a member of the multicopper oxidase family, laccases can oxidize a broad spec-
trum of phenolic (R-OH) and nonphenolic compounds (i.e., reactive dyes). In the catalytic
reaction of laccases, oxygen is the electron acceptor, producing water as a by-product
(Arregui et al., 2019). Currently, synthetic metal and metal-oxide nanozymes, such as
Fe, Ag, Pd, PdPt, guanosine monophosphate (GMP-Cu), Cys-His dipeptide-Cu (CH-Cu),
Ce0O,, MnO,, Fe30,, and surface-modified nanomaterials, are actively utilized for the
elimination and conversion of R-OH (Chen et al., 2019). In addition, the micro—/nano-
sized CuO particles also exhibited peroxidase and laccase activities, as indicated by
TMB and phenol degradation (Liu et al., 2014). Significantly, the nanosized CuO in the
degradation of phenol, catechol, hydroquinone, and other byproducts has highlighted
to act effectively than larger particle size of nanozyme, which has insufficient phenol
degradation. The hypothesis has been proposed that the catalytic activity of CuO particles
increases due to the increased surface area/volume in smaller particles. Laccase-
mimicking nanozymes have been proposed to convert oxygen to water directly without
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generating H,0,. A study supporting this hypothesis employed CH-Cu for the removal of
2,4-dichlorophenol. After the reaction, adding ABTS and HRP to the supernatant did not
induce any color change. However, the introduction of H,0O, into the environment
resulted in an immediate shift in color to green, confirming the nanozyme’s mimicking
of laccase (Wang et al., 2019c).

The mechanism of R-OH transformation through metal and metal-oxide nanozymes
involves surface reactions encompassing R-OH adsorption, diffusion, chemical transfor-
mation, and product desorption steps. Metal and metal-oxide nanozymes initially adsorb
R-OH compounds onto their surfaces, forming surface complexes. Surface complexes
undergo one-electron transfer to produce phenoxy radical intermediates, inducing a
change in the metal redox state. The electrons in phenoxy radicals resonate with benzene
rings, leading to covalent bonding reactions, forming dimers, trimers, tetramers, oligo-
mers, and polymers. Simultaneously, the transfer of a solitary electron can result in the
dehydrogenation, hydrolysis, and hydroxylation reactions of R-OH, generating small
molecule species (Chen et al., 2019; Zhou et al., 2017; Wang et al., 2017).

21.5 Conclusion and future perspectives

Nanozymes are highly promising materials with numerous advantages, such as affordabil-
ity, straightforward preparation, robust stability, and recyclability, for the determination and
removal of metal ions with high sensitivity and selectivity, as well as the detection and deg-
radation of toxic organic molecules, such as dyes, phenolic compounds, and antibiotics.
Since their initial discovery, nanozymes have garnered increased research interest due to
their catalytic properties and enhanced tolerance to challenging working and storage con-
ditions compared to natural enzymes. They find applications across a wide range of fields,
including health sciences and ecological studies, encompassing diagnosis and treatment,
sensing, environmental monitoring, and remediation of environmental contaminants.
The majority of nanozymes exhibit peroxidase/oxidase-like activity in the presence of
metal ions, and this activity can be enhanced. Peroxidase-like catalytic activity, especially
in the degradation of environmental pollutants, such as phenols and dyes (MB, RhB), has
been the most explored activity. Composite nanozymes containing Fe;O, nanoparticles,
especially on carbon materials or MOFs, have demonstrated higher catalytic efficiency
compared to metal/metal-oxide nanozymes. However, recent studies suggest that the
combination of nanozymes with natural enzymes may lead to positive synergistic effects
in specific applications. Ongoing efforts to improve catalytic activity aim to support sus-
tainable growth and increase the application of nanozymes in the environmental field.
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