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2 Green processes and green fibers

Abstract: “Green Electrospinning” not from only non-toxic solvents but also from
biopolymer solutions has become popular in recent years. Green fibers are particu-
larly interesting for biomedical applications such as tissue engineering, drug deliv-
ery, biocompatible scaffolds, biosensors, and for photovoltaics, supercapacitors,
fuel cells, battery components as energy fields, and for filtration membranes as en-
vironmental applications. In this chapter, we classified green electrospinning into
two groups: (i) green processes as polymer free, solvent free, solution, and colloid
electrospinning, (ii) green fibers from natural polymers and blends.

Keywords: benign solvent, bioactive agents, clean electrospinning, colloid electro-
spinning, natural polymer, polymer-free, solvent-free

2.1 Green processes

2.1.1 Polymer-free electrospinning

Typically, electrospinning studies are carried out using high-molecular-weight poly-
mers and high solution concentrations because of chain entanglements and the contin-
uous stretching of the charged jet. Long et al. [1] reported that high-molecular-weight
polymers are not the only the requirement, but the presence of sufficient intermolecu-
lar interactions can also act as chain entanglements for the continuous fiber formation.
Therefore, besides easily electrospinnable polymers, globular proteins and low-
molecular-weight compounds [such as Gemini surfactants, phospholipids, diphenyla-
lanine peptides, and cyclodextrins (CDs)] have also been electrospun into fibers, since
they exhibit a similar behavior to polymers in solution [2–5]. Electrospinnability of
globular proteins (namely bovine serum albumin) was attributed to disruption of the
tertiary structure and reduction of intramolecular disulfide bonds, allowing the
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reformation of intra- and intermolecular disulfide bonds [6]. Increasing the concentra-
tion of Gemini surfactants and phospholipids in the appropriate solvent results in the
formation of entangled cylindrical or worm-like micelles. Furthermore, diphenylala-
nine peptides that self-aggregate into nanotubes were transformed into nanofibers due
to the presence of π–π interactions. A cyclic oligosaccharide, CD, self-assembles in
their concentrated solutions to form aggregates through intermolecular hydrogen
bonding, which makes possible to obtain electrospun nanofibers. Polymer-free nano-
fibers of α-, β-, and γ-CDs have been fabricated by the selection of suitable solvents
and concentrations ensuring sufficient viscosity and conductivity [7–10]. The morphol-
ogy and the diameter of the resulting fibers are affected by not only the type of solvents
but also the type of CDs. CD derivatives, such as hydroxypropyl-β-cyclodextrin
(HPβCD) [11, 12], hydroxypropyl-γ-cyclodextrin (HPγCD) [11, 13], and methyl-β-
cyclodextrin (MβCD) [11], have been obtained using water, N,N-dimethyl formamide
(DMF), and dimethyl acetamide (DMAc) as solvents. Among them, DMF is found to
produce bead-free fibers with the three derivatives [12].

Compared to other small molecules, CDs are advantageous because they can
form host–guest inclusion complexes (ICs) with different compounds, such as
drugs, volatile compounds, food or cosmetic additives, and antibacterial agents.
The CD inclusion complexation enhances thermal stability and water solubility of
the hydrophobic guest molecules, which provides a promising platform for drug de-
livery applications. Nanofibers of CD–ICs containing 4-amino benzene [14], spirono-
lactone [15], triclosan [16], diclofenac [17], geraniol [18], vanillin, limonene [19],
sulfobutyl ether7-β-CD [20], vitamin E [21], camphor [22], and linalool [23] have suc-
cessfully been produced without using a polymeric matrix. The most commonly
used solvents for CD–ICs are water, ethanol, aqueous sodium hydroxide, DMF,
DMAc, dimethyl sulfoxide, and ionic liquids (ILs, e.g., 1-ethyl-3-methyl imidazolium
acetate). To obtain nanofibers as reconstitutable solids for drug-release applica-
tions, electrospinning IC is also used as an alternative to the freeze-drying process
for the preparation of fast-dissolving CD-based solid complexes containing limited
soluble drugs [17].

On the one hand, because of their hydrophobic cavity and the hydrophilic sur-
face, CDs can form the host–guest ICs with various bioactive compounds to be used
for the fast-dissolving, prolonged release, and long shelf-life of the active component,
enhanced thermal stability, and water solubility. On the other hand, CDs are used as
both reducing and stabilizing agents for the green synthesis of gold nanoparticles [24].

Apart from CDs, Allais et al. [25] enlarged the list of possible small molecules used
for electrospinning using tannic acid without the addition of any polymer. They also
reported the cross-linking of tannic acid nanofibrous membranes by the oxidation of
galloyl groups with sodium iodate and ferric ions to obtain mechanical integrity.
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2.1.2 Solvent-free electrospinning

Techniques associated with solvent-free electrospinning neither have a risk of resid-
ual solvents being present for biomedical applications, nor is there any solvent that
may evaporate into the air [26]. To remove solvents, special conditions are needed,
because electrospinning requires that the polymer chains are able to flow and ex-
tend in an electric field, so that the fibers are formed, which will be covered in de-
tail in Chapters 4 and 5.

The most common techniques for solvent-free electrospinning are electrospinning
from the melt state, supercritical carbon dioxide (CO2)-assisted anion-curing, UV-
curing, and thermocuring [27]. Two methods that we will focus on are the use of su-
percritical CO2 as a “solvent” and melt electrospinning. In both systems, there is no
traditional solvent used to dissolve the polymers. Supercritical CO2 uses the semiliquid
semigaseous properties of CO2 under high pressure and temperatures to aid in the
flow of polymer chains. Electrospinning of polymer melts, on the other hand, elimi-
nates the use of toxic solvents by heating semicrystalline polymers or glassy polymers
above their melting temperature (Tm) and glass transition temperature (Tg), so that
a viscous solution in which polymer chains are capable of flowing can be formed.

Supercritical carbon dioxide

CO2 is a gas at standard temperature and ambient pressure. When temperature and
pressure are increased above a critical point, CO2 behaves somewhat like both a gas
and a liquid [28]. Electrospinning in the presence of supercritical CO2 is similar to the
one at ambient temperature, but the supercritical CO2 liquid is used to alter the viscos-
ity of the polymer, much like a solvent or a plasticizer. CO2 is used because it is rela-
tively nontoxic, nonflammable, inexpensive, easily available, odorless, tasteless, and
relatively environmentally friendly. In addition, CO2 evaporates at ambient conditions
and is therefore easily released from the products [29].

The solvating power of supercritical CO2 is connected to its density, which in
turn depends on the pressure and the temperature [30]. The solubility of the poly-
mer in supercritical CO2 therefore may be controlled greatly by pressure and tem-
perature, as a higher density generally translates to higher solubility.

Melt Electrospinning

In melt electrospinning, polymers are processed by using heat to melt the polymer.
Unlike traditional electrospun fibers, which form due to the precipitation out of solu-
tion of the polymer as the solvent is evaporated, fibers are formed in melt electrospin-
ning by the cooling down of the polymer melt while being collected [31]. Melt
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electrospinning is like an extrusion technique with the addition of a high voltage to
further stretch the fibers [32]. The greatest problem with melt electrospinning is that
the absence of solvent greatly reduces the surface charge density of polymer melts,
which results in instabilities of the fiber jet [33].

2.1.3 Solution electrospinning

In a classical electrospinning process, nanofibers are fabricated by dissolving the
polymer in an appropriate solvent. However, except water, most of the electrospin-
ning solvents used to dissolve polymers are toxic and harmful to the environment
and human health. Thus, the use of green solvents is significant to reduce environ-
mental and health impacts. The main alternatives to traditional organic solvents
are (i) water, (ii) mild solvents, and (iii) ILs.

Water as a Solvent

Water is certainly a good solvent for water-soluble polymers. However, mechanical
strength of nanofibers electrospun from water-based polymers is low, limiting their use
in aqueous systems. To enhance their mechanical properties and make them water-
insoluble, additional modifications such as cross-linking, UV, or plasma treatment are
required. On the other hand, frequently used cross-linkers like gluteraldehyde, diethy-
lene glycol, glyoxal, epichlorohydrin, and 1-ethyl-3-(3-dimethylaminopropyl) carbodii-
mide together with N-hydroxysuccinimide are toxic. New trends are directed toward
the use of nontoxic reagents such as citric acid, proanthocyanidin, epigallocate-
chin-3-gallate (EGCG), genipin to reduce the use of the aforementioned toxic
cross-linkers. Table 2.1 reports a summary of nanofibers from aqueous precursors
by green electrospinning, including the details about fiber diameters, cross-
linking and/or reducing agents, and applications.

A different water-based electrospinning approach, which is also considered as
green, is used to fabricate inorganic fibers. The production of inorganic fibers is based
on the simultaneous electrospinning of water-soluble polymer and metal precursor(s)
blends followed by calcination. Table 2.2 lists works on metal oxide fibers electrospun
from aqueous polymer/metals salt(s) solutions, heat treatment parameters, as well as
their potential applications. The resulting metal oxide nanofibers have been mostly
used in energy applications such as solar cells, electrodes for batteries, fuel cells, and
supercapacitors.

By taking Tables 2.1 and 2.2 into consideration, except the studies involving
only fabrication and characterization, these water-based electrospun fibers find ap-
plications mainly in biomedical and energy fields.
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Mild Solvents

Many types of polymers, both synthetic and natural, have been used for the fabrica-
tion of “green fibers” using mild solvents. Table 2.3 summarizes the solvents used

Table 2.2: Metal oxide nanofibers fabricated by electrospinning an aqueous solution containing
metal salt(s) or metal alkoxide and a template polymer.

Electrospinning solution Heat treatment
parameters

Metal oxide(s)
nanofibers

Application Reference

PVP/TTIP/EtOH/AA/
Zn(NO)·HO

 °C for  h Zn-doped TiO

hollow fibers
Dye-sensitized
solar cells

[]

PVA/polymerized sucrose  °C
(stabilization)
 and  °C
(carbonization in
Ar/H)

Porous carbon
nanofibers

Electrode for
supercapacitor

[]

PVP/Cu(CHCOO)·HO/
Ce(NO)·HO

 °C for  h CuO/CeO

nanofibers
– []

PVA/Zn(CHCOO)·
HO/AlCl·HO
+
PVA/Zn(CHCOO)·HO/
Co(CHCOO)·HO

, , ,
 °C for  h

Co- and Al-doped
ZnO nanofibers

Nanogenerator []

PVA/SnCl·HO , °C for  h SnO nanofibers – []

PVA/Zn(CHCOO)·HO  °C ZnO nanofibers Nanogenerator []

PVA/Mn(CHCOO)·HO , °C for  h MnO nanofibers – []

PVA/Al(NO)·HO/
Al[OCH(CH)]

, °C AlO nanofibers – []

Table 2.3: Mild solvents and solvent mixtures that belong to Class
3 used in green electrospinning.

Mild solvents

Water Ethanol
Acetic acid Ethanol/water
Acetic acid/formic acid Ethanol/acetic acid
Acetic acid/water -Methoxy ethanol
Acetic acid/-methoxy ethanol Ethyl acetate
Acetone Formic acid
Dimethyl sulfoxide Limonene
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for green electrospinning that belongs to Class 3 (solvents with low toxic potential)
according to the classification in ICH (International Conference on Harmonisation of
Technical Requirements for Registration of Pharmaceuticals for Human Use) [74].

Literature documents the ability to electrospin synthetic polymers by using mild
solvents instead of commonly used toxic ones. The investigated synthetic polymer/
mild solvent systems are PVP/ethanol [75, 76], PVP/2-methoxy ethanol and acetic acid
[77], PVA/ethanol/water [78], poly[N-isopropylacrylamide-co-(maleic acid)]/ethanol
[79], PCL/glacial acetic acid [80], PCL/acetone [81], and nylon-6/formic acid [82].

Although the fibers from synthetic polymers are often a more economic and ver-
satile alternative, biofibers are especially interesting because of their biocompatibility
or biodegradability. Awal et al. [83] fabricated cellulose-based nanocomposite fibers
electrospun from wood pulp and nylon 6,6 solution in formic acid. The same research
group also obtained green composite fibers prepared by electrospinning PEO/wood
pulp solution with a mixed solvent of ethanol and water [84]. Another wood compo-
nent, lignin, is being used as an eco-friendly precursor [85]. The fabrication of lignin
fibers through green electrospinning is problematic because of its low viscoelastic
properties and water insolubility. The former case can be solved by using additional
synthetic polymers to improve the spinnability. The water-soluble derivatives of lig-
nin such as lignosulfonates can be an alternative for the latter case. Misra et al. [86]
prepared sulfur-free anionic sodium carbonate lignin, chitosan, and PEO blend solu-
tion in aqueous acetic acid. The inherent negative charge of the lignin was neutral-
ized by cationic chitosan. The free-sodium ions and PEO were removed from the
fibers through a water-soaking process to obtain pure carbon fiber.

Chitosan, which is derived from chitin (the second most abundant natural poly-
mer after cellulose), has also been used as a reducing and stabilizing agent in nano-
particle synthesis. For instance, Zhuang et al. [87] demonstrated the use of chitosan
as a reducing agent and stabilizer for the fabrication of chitosan/gelatin nanofibers
containing silver nanoparticles (AgNPs). A mixed solution of AgNPs–chitosan com-
posite with gelatin containing acetic acid was used to produce nanofibers.

Green synthesis of metal nanoparticles on the electrospun nanofibers is also based
on the addition of metallic salt(s) into the polymer solutions and further treating the
nanofibers by using nontoxic and safe chemicals from plant extracts as reducing
agents, annealing, and irradiation techniques (i.e., UV or plasma). As an example,
Arvand et al. [88] described the synthesis process for antibacterial AgNP-modified chi-
tosan-based fibers using Eucalyptus extract. Aqueous acetic acid solution of chitosan,
PEO, and silver nitrate was electrospun, and the composite fibers were immersed in
ethanolic extract of Eucalyptus as a reducing agent instead of using NaBH4 to form
AgNPs on the nanofibers. Similarly, use of Falcaria vulgaris extract as a green reduc-
tant was reported by Kohsari et al. [89]. Using a different approach, ex situ prepared
AgNPs were added into the electrospinning solution of chitosan and PEO in aqueous
acetic acid.
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In addition to functionalization with metal nanoparticles, by combining chi-
tosan with natural biocomponents leads to potential usage in biomedical applica-
tions. A new nanofibrous wound dressing containing green tea extract was
proposed by Sadri and collaborators [90]. They prepared electrospinning solu-
tions that dissolved chitosan/PEO/green tea extract in aqueous acetic acid solu-
tion. Chitosan and PEO were used as matrix, and green tea extract was used to
improve the wound healing performance of the chitosan-based nanofibers. Li
et al. [91] reported fabrication of electrospun zein fibers as carriers to stabilize
green tea polyphenol, (–)-epigallocatechin gallate (EGCG). The fiber-forming so-
lution was prepared by dissolving EGCG in an aqueous ethanol solution of zein.
Encapsulating EGCG in zein fibers resulted in the enhanced stability of the bioac-
tive compound.

Collagen scaffolds are preferred for use in tissue engineering, artificial skin,
and drug delivery. Zhang et al. [92] prepared PVA/collagen micro-nanofibers from
water/acetic acid mixtures. Zhou et al. [93] proposed a greener synthesis of electro-
spun collagen/hydroxyapatite (HAP) composite fibers from phosphate buffer sa-
line/ethanol/water system. The desalination of collagen solution and the use of
HAP sol led to a good dispersion of HAP particles in the electrospinning solution
and the alignment of HAP particles in the collagen/HAP composites in the mean-
time improved the mechanical properties of the resulting composites. The use of
acetic acid and water as a green solvent for the fabrication of a collagen/HAP com-
posite fibers was also highlighted by Castilla-Casadiego et al. [94].

Nieuwland et al. [95] showed for the first time electrospinning of globular pro-
teins under food-grade conditions. In the case of zein-based fibers, ethanol was
used; while in gelatin-based fibers, warm water was used as a solvent. Uniform
protein nanofibers were prepared by electrospinning of gelatin for air-filtration
purposes. Instead of commonly used toxic solvents (e.g., TFA, TFE, or HFIP),
a nontoxic solvent mixture of acetic acid/water mixture was used to fabricate uni-
form gelatin nanofiber mats as air-filtering material. In addition, the diameter of
gelatin nanofibers was also reduced to be around 70 nm, which results in high
surface area and high filtration efficiencies [96].

Another application is to use natural fibers as a skeleton material in gel poly-
mer electrolyte (GPE) of lithium-ion batteries. Zhu et al. [97] fabricated soy protein
isolate/PVA nanofibrous mats using acetic acid/water mixture as solvent. The bio-
degradable composite mat was then activated in liquid electrolytes providing high-
performance and green skeleton material in GPEs.

Natural solvents can also be used as an alternative for electrospinning. For
instance, limonene, which is the main component of lemon and orange oils, is
a cyclic monoterpene and started to be used to obtain polystyrene [98–100],
poly(vinyl alcohol) [101, 102], asolectin phospholipid [103], and CD nanofibers
[104].
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Ionic Liquids

ILs consist of ions influenced by the presence of Coulombic interactions and have dif-
ferent physicochemical properties compared to traditional VOCs. Many ILs are nonvol-
atile, more viscous than VOCs, highly conductive and they can provide dissolution of
biopolymers not soluble in VOCs. Therefore, electrospinning of biopolymers, such as
cellulose [105–110], heparin [106, 111], agarose [112], silk [113, 114], and chitin [115, 116],
has attracted much attention. Unlike traditional solution process, using ILs requires
dissolution of a polymer in the ILs as solvent followed by electrospinning into the co-
agulation bath which can be water, ethanol, or water/ethanol mixture as antisolvents.
The most often used ILs are 1-butyl-3-methylimidazolium chloride ([C4mim]Cl), bro-
mide ([C4mim]Br), and acetate ([C4mim][OAc]), 1-ethyl-3-methylimidazolium benzoate
([C2mim][BA]), acetate ([C2mim][OAc]), and lactate ([C2mim][OLac]). ILs containing
basic acetate [OAc−] or chloride [Cl−] anions and alkyl imidazolium cations have been
identified as the appropriate solvent for biopolymer dissolution [116, 117].

2.1.4 Colloid electrospinning

An improved method for the combination of complex nanostructures with fibers is re-
ferred to as colloid electrospinning, which leads to the development of physical and
biological properties that encompass both materials [118]. This technique allows for
the electrospinning of dispersions of polymer and/or inorganic nanoparticles/nano-
capsules with a solution of an electrospinnable polymer. Colloid electrospinning can
be classified into two main groups: as suspensions and as emulsions [118, 119]. The
examples of organic/inorganic nanostructures used in suspension and emulsion elec-
trospinning are summarized in Table 2.4. Inorganic nanostructures constitute the larg-
est fraction of the suspension electrospinning category. They are advantageous when
compared to organic colloids because inorganic nanostructures have a higher density
than the polymer templates, and their location in the fiber is usually easily identified
by electron microscopy [118, 120]. Metals, metalloids, and their oxides, fluorescent
markers, and other minerals fall into the inorganic nanostructure groups used in sus-
pension electrospinning. Besides inorganic nanostructures, hydrophilic/hydrophobic
polymer particles and natural systems such as viruses and bacteria may be used in
suspension electrospinning. In the case of emulsion electrospinning, water-in-oil, oil-
in-water, and polymer/polymer (nonaqueous) emulsions can be electrospun to obtain
core–sheath fibers, which are generally fabricated by coaxial electrospinning.
Although this method allows for control of the nanofibers structure, it is relatively dif-
ficult to scale up. Conversely, emulsion electrospinning is advantageous in recent
years as it allows the production of two-component nanofibers of controlled morphol-
ogy. Furthermore, this approach is environmentally friendly, reducing the amount of
organic solvent used during the process [119].
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Polymers that are commonly used in colloid electrospinning are polystyrene
[121–123], poly(ε-caprolactone) [124–126], poly(L-lactide) [127], poly(vinyl alcohol)
[120, 124, 128–137], poly(vinyl acetate) [124, 138], poly(vinyl alcohol)/poly(acrylic
acid) [139], poly(N-vinylpyrrolidone) [140–145], poly(vinyl formamide) [130], silk fi-
broin [146], poly(ethylene oxide) [147–150], N-carboxyethylchitosan [151], polyacrylo-
nitrile [152, 153], polymethyl methacrylate [154–156], polyamide 6 [157–159], chitosan/
gelatin [160], polyurethane [124, 161, 162], poly(ethylene terephthalate) [163], dextran
[164], polyacrylamide [165–167], poly(L-lactide-co-glycolide) [168], methylcellulose
[169], collagen [170], polyacrylic acid [171], polyvinylidene fluoride [172, 173], which
act as a structural network for the organic/inorganic nanostructures. Since colloid
electrospinning allows the use of almost any polymers and nanostructures, the re-
sulting hierarchically structured or compartmented nanofibers pave the way for vari-
ous applications such as catalysis [138], adsorption [143], membrane distillation [172,
173], optics [174–176], energy conversion and production [123, 177], drug delivery [131,
146], tissue engineering [113, 127, 178], and wound dressing [51, 134].

2.2 Green fibers

2.2.1 Natural material-based electrospinning

The use of eco-friendly products to reduce the consumption of synthetic plastics
that appear in groundwater and soil is an obvious potential area for green electro-
spinning. Natural materials suggest that the material comes from a source in nature
and therefore can be acquired from something that grows, for example, chitin, lig-
nin, and silk. Many natural materials have the added benefit that they are more eas-
ily biodegradable than synthetic materials [251].

Some natural materials could be used as a solvent or a plasticizer to induce
flow within the polymer fibers during the electrospinning process. For instance,
D-limonene, which is a natural solvent made of monoterpene hydrocarbon and is
the main component of orange or lemon peel oil, has been used as an electrospin-
ning solvent [99, 252]. In addition, other natural molecules such as hyaluronic
acid can be used in the formation of nanofibers without the difficulty of dissolu-
tion of much higher molecular weight polymers [253]. Natural polymers can
roughly be made up of two classes of biomacromolecules; proteins like silk, colla-
gen, and gelatin or polysaccharides like cellulose, chitosan, and dextran. [86, 254,
255]. Renewable resource-based molecules such as lignin have the potential for
green electrospinning as they are abundantly available and cheap [256].

Again we are brought to the question of Chapter 1, “how green is green?,” as
many natural polymers do not necessarily dissolve with ecofriendly solvents, and
other natural materials might only be a fraction of the final materials found in the
nanofibers and do not necessarily biodegrade any faster a than synthetic polymers.
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Table 2.4: Classification of the colloid electrospinning and the nanoparticles employed in the
literature.

Colloid Electrospinning

Electrospinning of suspensions

Electrospinning of inorganic nanostructures

Metals and metalloids Ag [,,], Au [,], Si [], Ti, Zn [], Co,
Cu [], Pt []

Metals and metalloid
oxides

SiO [,,,,,,,,,,–],
TiO [–], TiO/grapheme [], FeO [–], ZnO
[], BaTiO [], ITO (InO/SnO) [], MgO/ ZrO/AlO

[], NiO.ZnO.FeO [], Boehmite (Al(O)-OH) [, ],
LiCoO/CeO [], SnO/CeO [], WO [], graphene
oxide [, ]

Fluorescent markers Tris(-hydroxyquinoline) aluminum(III) (Alq) [], CdS/CdSe/
PdS [, ], ZnS/PdS [], CoS []

Other minerals Clay minerals (mica, zeolite, montmorillonite, bentonite)
[–], boron nitride[, ], CaCO [, ], calcium
phosphate [, ], hydroxyapatite
[,,,,,–], hydroxyapatite + CNT [,
], curcumin [], silicon carbide []

Electrospinning of polymer
particles

Polystyrene [–], PS/PBA/P(S-co-BA)[], P(S-co-BA),
P(S-co-BA-co-AMA), P(S-co-BA-co-DAAM) [], poly
(styrenemethyl methacrylate-acrylic acid) (poly(St-MMA-AA))
[, ], PMMA [], polyurethane [, ], PLGA [],
P(HA-b-EO) [], PVDF [], PVA [], P(MAA-co-DVB)/P
(MAA-co-TRIM) [], P(NIPAM-co-AA-co-MBAAm) [], poly
(N-isopropylacrylamide-co-tert-butyl acrylate) [], P(DMA-co-
EDMA-co-VP)/ P(DMA-co-EDMA-co-AMSA) []

Electrospinning of natural
systems

M viruses [], adipose-derived stem cells [],
Lysinibacillus sp. []

Electrospinning of emulsions

Water-in-oil emulsion PEG/PLA [, ], PDLLA [,,], PLGD [],
cellulose nanocrystals/PLA []

Oil-in-water emulsion PEO [], PVA [, ], PVP [, ]

Polymer–polymer emulsion PAN [, ]
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Some solutions to this problem may come from taking advantage of the blend
electrospinning technique discussed in the next section. Some natural polymers that
may be difficult to electrospin in aqueous solutions such as chitosan and silk fibroin
may be mixed with electrospinnable polymers like PVA, PEO, or PAA to increase
their processability while including properties of the natural polymer. Through
a careful polymer selection, nanofibers can have additional properties including anti-
bacterial or antifouling properties, for example, chitosan nanofibers intrinsically ex-
hibit antibacterial activity but require blending to make more easily spun [257].

2.2.2 Blend electrospinning

Blend electrospun fibers are produced from polymer solutions with or without other
additives. Factors that influence the fiber formation are related to the properties of
the polymer solution and electrospinning environment. In coaxial electrospinning,
two solutions are electrospun simultaneously through different capillary channels
into a nozzle. This generates composite nanofibers with a core–shell structure [258].
The term blend electrospinning can refer to a number of scenarios. Typically,
blends are a mixture of two or more components, which are mixed together in order
to gain properties from both materials; PEO/PVA for instance is a common blended
fiber [259]. The term “emulsion electrospinning” has also been used to describe
a type of blend electrospinning [118].

The main contribution blend electrospinning adds to the green electrospinning
process is in the use of natural additives to reduce the synthetic materials. There
are natural polymers that have relied heavily on addition of bioactive reagents, includ-
ing essential oils, polyphenols, herbal extracts, honey, and other natural components
[260, 261]. Cinnamaldehyde, for example, is a volatile essential oil that has been shown
to eradicate pathogens nonspecifically and has been added to electrospun fibers [262].

“Green/Safe/Clean Electrospinning,” which can be considered as an approach
to toxicology, safety, and environmental issues, has been the focus of many re-
search publications in recent years. Although the optimization of process parame-
ters with benign solvents and biopolymers is more difficult, promising results have
been obtained for the generation of green nanofibers particularly in biomedical and
healthcare applications.

Abbreviations

AMSA Acrylamidoethylsulfonic acid
BSA Bovine Serum Albumin
CNT Carbon nanotube
CMC Carboxymethyl cellulose
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CD Cyclodextrin
DMAc Dimethyl acetamide
DMSO Dimethyl sulfoxide
DVB Divinylbenzene
ECH Epichlorohydrin
EGCG Epigallocatechin-3-gallate
EDMA Ethylene dimethacrylate
GPE Gel polymer electrolyte
Tg Glass transition temperature
HFIP Hexafluoroisopropanol
HAP Hydroxyapatite
HPβCD Hydroxypropyl-β-cyclodextrin
HPγCD Hydroxypropyl-γ-cyclodextrin
IC Inclusion complex
ILs Ionic liquids
Tm Melting temperature
MAA Methacrylic acid
MβCD Methyl-β-cyclodextrin
NIPAM N-isopropylacrylamide
DMF N,N-dimethyl formamide
DMA N,N-dimethylacrylamide
MBAAm N,N-methylenebis(acrylamide)
ODA-MMT Octadecyl amine-montromorillonite
O/W Oil-in-water
PDLLA Poly(DL-lactic acid)
PLA Poly(lactic acid)
PLGA Poly(lactic-co-glycolic acid)
PHA Poly(hexamethylene adipate)
PBA Poly(n-butyl acrylate)
P(S-co-BA-co-AMA) Poly(styrene-co-n-butyl acrylate-co-allymethacrylate)
P(S-co-BA-co-DAAM) Poly(styrene-co-n-butyl acrylate-co-diacetone acrylamide)
P(S-co-BA) Poly(styrene-co-n-butyl acrylate)
Poly(St-MMA-AA) Poly(styrenemethyl methacrylate-acrylic acid)
PCL-b-MPEG Poly[(epsilon-caprolactone)-block-(methoxypolyethylene glycol)]
PHA-b-MPEG Poly[(hexamethylene adipate)-block-(methoxypolyethylene glycol)]
PAA Polyacrylic acid
PAN Polyacrylonitrile
PEG Polyethylene glycol
PEO Polyethylene oxide
PEI Polyethylenimine
PMMA Polymethyl methacrylate
PU Polyurethane
PVA Polyvinyl alcohol
PVDF Polyvinylidene fluoride
PVP Polyvinylpyrrolidone
AgNPs Silver nanoparticles
SCL Sodium carbonate lignin
TTIP Titanium(IV) isopropoxide
TFA Trifluoroacetic acid
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TFE Trifluoroethanol
TRIM Trimethylolpropane trimethacrylate
VOCs Volatile Organic Compounds
W/O Water-in-oil
WPU Waterborne polyurethane
VP 4-vinylpyridine
EDC/NHS 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide /

N-hydroxysuccinimide
[C4mim]Cl 1-butyl-3-methylimidazolium chloride
[C4mim]Br 1-butyl-3-methylimidazolium bromide
[C4mim][OAc] 1-butyl-3-methylimidazolium acetate
[C2mim][BA] 1-ethyl-3-methylimidazolium benzoate
[C2mim][OAc]) 1-ethyl-3-methylimidazolium acetate
[C2mim][OLac] 1-ethyl-3-methylimidazolium lactate
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