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Abstract Meeting the increasing demand for energy and clean water, access to
these resources has become an essential requirement of modern human life.
Nanohybrid material engineering is significant for the development of functional
materials which can be used as photocatalyst. By optimizing the size, shape, and
surface properties of such nanostructures, the photocatalytic process in terms of
ensuring sustainable resource supply can be improved. The hybrid nanomaterials
aim to obtain a high visible light absorption and low charge recombination resulting
in a superior efficiency of photocatalytic reactions. The application areas which
benefit from such nanohybrid materials are the filtration and degradation of organic
pollutants and the photochemical hydrogen production for solar water splitting.
This chapter describes in detail the nanohybrid materials including metal oxides,
carbon-based materials, metal sulfides, metal–organic frameworks, and transition
metal phosphides as well as bandgap tuning based on these structures, which affect
the efficiency of photocatalysis.
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26.1 Introduction

The non-renewable energy resources reserve mainly constituted of fossil fuels have
a limited source and might be run out in the near future, causing an energy crisis
[121]. Besides, the pollutant gases have produced by these fossil resources threaten
global life due to contamination of air and climate change [38, 159]. Therefore, it
has become important to improve the use of renewable resources which can supply
the energy demand of the world. While the sources such as wind, biomass, hydro,
geothermal, which have all renewable energy potential, have a strong production
performance, the solar energy potential is relatively high, and it differs from the
others remarkably given the capacity [193].

In recent years, the production of fuels such as hydrogen, methanol, and methane
produced by converting solar energy into chemical energy has become a very
rational approach to meet the energy demand and to cope with the environmental
challenges. Photoelectrochemical (PEC) water splitting and CO2 reduction is per-
formed by using different semiconductor nanostructures as a photocatalyst to per-
form the solar-to-fuel conversion. Figure 26.1a shows the primary mechanism of
water splitting by using a semiconductor photocatalyst. This mechanism works as
follows: when a photocatalyst exposed the light which is greater or equal to its
bandgap energy, absorbs the photons. Thus electrons and holes are formed bounded
by Coulomb forces on the valance band and conduction band, respectively [233].
The semiconductor utilizes a proton to excite an electron from valance band to the
conduction band in an excited state. The exposed light excites the electrons into the
conduction band by leaving behind the holes in the valance band, as seen in
Fig. 26.1b. An oxidation–reduction reaction proceeds during the exposure of the
light. The charge carriers dissociate in a catalyst-liquid interface to produce
hydrogen and oxygen from water molecules. However, one of the challenges during

Fig. 26.1 a Photocatalytic processes on semiconductor nanomaterial involving photoexcitation
and formation of electron−hole pair in the nanomaterial. The charges separately diffuse to the
surface, where they can participate in reduction and oxidation reactions, respectively; b Energy
diagram of the same process for a semiconductor with conduction band minimum located at ECB

and valence band maximum at EVB, separated by a bandgap Eg. The overpotentials, DE, shown in
blue, provide the driving force for the transfer of the charges to the electron acceptor (reduction)
and donor (oxidation) molecules. the Fermi levels of the electrons and the holes are elevated to
so-called quasi-Fermi levels, corresponding to Fermi levels under illumination (from Ref. [233]
with permission from American Chemical Society)
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the reaction is that the electrons and holes recombine on the catalyst surface, which
resulted in low conversion efficiency.

In order to increase the photoconversion efficiency of the semiconductor nano-
materials, some methods used have led to the emergence of different strategies.
These strategies may involve changing the shape, size, composition, and thus the
active surface sites of the semiconductor photocatalysis [15]. It may involve doping
method, surface functionalization, or forming a new interface with different
nanomaterials as a heterostructure [190]. Therefore, the electronic band structure of
the material would differ, and the solar-to-fuel efficiency would result in various
efficiency depending on the bandgap engineering of the material. The required
minimum energy transfer to achieve water splitting should be 1.23 eV per electron,
according to Nernst’s equation [254]. Thus, the photocatalyst to be used must
absorb solar light photon energy greater than 1.23 eV. In a photoanode to conduct
the oxygen evolution reaction (OER), the valence band must be more positive than
the O2/H2O potential. In contrast, in a photocathode, the hydrogen evolution
reaction (HER) would be conducted with more negative potential than the H+/H2

potential [227]. The band edge positions of different materials are shown in
Fig. 26.2.

The requirement to perform an effective PEC water splitting and to commer-
cialize it is to increase light-to-energy conversion efficiency. Until today, studies
have been carried out on the development of low-priced, non-toxic, stable, and
efficient semiconductor materials that can absorb the light in the visible region of
the electromagnetic spectrum. It should be noted that the solar light, which is a
green energy source by itself, is also included in the scope of green energy in the
many synthesis methods of photocatalysts used to harvest it.

Many literature studies, in which all configurable and hybrid combinations of
nanomaterials have been investigated using as a photocathode or photoanode in
overall solar water splitting reaction to increase efficiency as a photocatalyst. This
book chapter focuses on recent studies on solar-to-fuel conversion because of the

Fig. 26.2 Band edge positions of semiconductors and their relevance with photocatalytic H2

generation
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highly efficient nanomaterials such as metal oxides, metal–organic frameworks,
carbon-based materials, metal sulphides, and phosphides which have been used
mostly for photoelectrochemical water splitting applications. The factors which
reduce the efficiency of solar conversion will be discussed based on the electron–
hole recombination, limited photon absorption, and charge separation efficiency for
the mentioned nanomaterials. This chapter has been evaluated for water splitting
and CO2 reduction application of the nanomaterials, however, it should be noted
that the same structures can also be used for photocatalytic degradation application.

26.2 Metal Oxides

In this section, we aim to focus on the use of hybridized metal oxide nanomaterials
in the study of photocatalysis for hydrogen generation from water splitting, pol-
lutant degradation, and greenhouse gas reduction. Nanostructured metal oxides are
ideal photocatalysts due to their high surface area, reactive sites, bandgap, and
morphology [116, 213]. The metal oxide first remembered as a photocatalyst is
titanium dioxide (TiO2) with its non-toxicity, chemical stability, and high photo-
catalytic activity. However, one disadvantage is the wide bandgap (3.2 eV) that
makes TiO2 only sensitive to the ultraviolet (UV) region [48]. Another disadvan-
tage is the fast electron–hole recombination and its relatively poor charge-carrying
ability, resulting in low quantum efficiencies [96, 169]. Several approaches have
been used to modify TiO2 materials to overcome these disadvantages. Not only
morphological modifications such as the production of TiO2 nanomaterials with
larger surface area, but also chemical modifications which include metal, non-metal,
metal- non-metal, metal oxide doping, immobilization of TiO2 on secondary sub-
strates, and the use of nanomaterials as TiO2 support, composite fabrication with
semi-conductors have been applied to increase photocatalytic activity. In this
context, some studies which have been conducted in recent years are classified in
Table 26.1.

Doping is one of the frequently used methods to increase the photocatalytic
activity of TiO2 by reducing the bandgap and constructing new energy levels. The
proper amount of doping will reduce the recombination of photogenerated charges,
but when used excessively, they act as a recombination center [5]. One of the
favorite metal doping for TiO2 semiconductor is iron which is non-toxic, inex-
pensive, and earth-abundant element. Because the ionic radius of iron is very close
to the TiO2 lattice parameter [306], in this case, it can also be doped easily.
However, the iron doping process requires precise control during synthesis. Xu
et al. showed that the photocatalytic performance of Fe-doped TiO2 varies
depending on the method of synthesis, iron precursor, and iron concentration which
cause the changes in porosity, particle size, and morphology [291]. The CH4 for-
mation yield was 0.23 lmol g−1 h−1 under visible light illumination for Fe-doped
TiO2. Its specific surface area and bandgap were 275 m2 g−1, 2.75 eV, respectively.
Fe-TiO2-500 was synthesized via one-step hydrothermal method at 500 °C. BET
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Table 26.1 The chemical modification classification for TiO2

Chemical modifications

Metal doping Bimetal doping Metal oxide doping Metal/non-metal doping

Silver (Ag) [69],
Aluminium
(Al) [191]
Cobalt
(Co) [307]
Chromium
(Cr) [170]
Copper
(Cu) [41]
Erbium
(Er) [226]
Gallium
(Ga) [152]
Lanthanum
(La) [145]
Magnesium
(Mg) [179]
Molybdenum
(Mo) [115]
Manganese
(Mn) [236]
Nickel
(Ni) [110]
Niobium
(Nb) [173]
Palladium
(Pd) [212]
Platinum
(Pt) [39]
Rhodium
(Rh) [108]
Ruthenium
(Ru) [4]
Antimony
(Sb) [133]
Tin (Sn) [228]
Strontium
(Sr) [326]
Terbium
(Tb) [274]
Vanadium
(V) [194]
Tungsten
(W) [137]
Ytterbium
(Y) [14]
Zinc (Zn) [104]
Zirconium
(Zr) [46]

Au–Ag [304]
Bi–Y [76]
Cu–Ni [160]
Cu–Zn [160]
Fe–Ni [240]
Ni–Bi [183]
Ni–Cr [218]
Ni–Si [129]
Mn–Zn [276]
Er–W [113]
La–Nb [75]
Rh–Sb [106]
Sn–La [343]
Sr–Rh [184]
Zr–Ag [180]
Zr–Pd [46]

Cu2O [296]
Fe2O3 [177]
MoO3 [109]
NiO [112]
PdO [105]
PtO [174]
SnO2 [83]
WO3 [66]
V2O5 [198]
ZnO [189]
ZrO2 [157]

Fe–N [54]
Ag–N [316]
K–Na–Cl [45]

Non-metal doping
Carbon (C) [130]
Nitrogen (N) [107]
Phosphorus (P) [171]
Sulfur (S) [197]
Selenium (Se) [287]
Fluorine (F) [17]
Chlorine (Cl) [270]
Bromine (Br) [265]
Iodine (I) [215]
N–S [58]
C–N–S [51]

Hybrid TiO2

nanostructures
Graphitic carbon
nitride (g-C3N4)–Pt–
TiO2 [313]
TiO2 supported
MOF-199 derived Cu–
Cu2O
nanoparticles [158]
g-C3N4 nanosheet
hybridized N-doped
TiO2 nanofibers [77]
TiO2/FeMnP core/shell
nanorod [216]
Pd-decorated
hierarchical TiO2

constructed
from the MOFs NH2-
MIL-125(Ti) [300]
Cu/TiO2/Ti3C2Tx

[192]
NH2-MIL-125(Ti)/
TiO2 [309]
Cu/TiO2 core−shell
heterostructures
derived from Cu-MOF
[176]
TiO2 nanorod mats
surface sensitized by
cobalt ZIF-67 [56]
Fe2TiO5–TiO2 [321]
MOF-derived TiO2

photoanodes sensitized
with
quantum dots
(CdSe@CdS) [221]
Ru species supported
on MOF-derived
N-doped TiO2/C
hybrids [299]

TiO2 supported on
secondary substances
Activated carbon fibers
(ACFs) [64]
Carbon nanotubes (CNTs)
[10]
Graphitic carbon nitride
(g-C3N4) [229]
Graphene [79]
Graphene oxide [249]
Silica [196]
Aluminium silicate [95]
Zeolite [315]
Biochar [317]
Poly(methyl methacrylate)
nanofibers [134]
Poly
(styrene-co-vinylphosphonic
acid) fibers [88]

Nanomaterials
supported on
TiO2

Ag nanoparticles
[332]
Au nanoparticles
[187]
Au–Pd
nanoparticles [42]
Bi nanoparticles
[333]
Cu nanoparticles
[210]
CuO
nanoparticles
[312]
Pd–Au
nanoparticles
[224]
PdCoNi
nanoparticles [24]
Pt nanoparticles
[234]
Pt–Pb
nanoparticles [9]
SnO2

nanostructures
[256]
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specific surface area was 202 m2, and the bandgap was of 2.42 eV. The bandgap
and porosity reduced by the chancing the synthesis condition, which results in an
increase of the CH4 formation rate as 0.47 lmol g−1 h−1.

The concentration of metal doping affects the photocatalytic activity of
doped-TiO2 since the metal doping may tune the anatase–rutile transformation
during the synthesis [5]. Anatase is the indirect bandgap semiconductor, whereas
rutile is direct bandgap semiconductor. Indirect bandgap anatase exhibits a longer
lifetime of photoexcited electrons and holes. It has been shown that anatase has the
lightest effective mass, which helps the fastest migration of photogenerated elec-
trons and holes from the inside to surface of anatase TiO2 by lowering the
recombination rate of photogenerated charge carriers. Therefore, anatase TiO2 has a
higher photocatalytic activity than rutile TiO2 [319].

Rutile and anatase have a band of 3.0 and 3.2 eV, respectively. Ding et al. have
formed a heterojunction with these two phases, and the internal electric field has
been built with two different work functions of anatase and rutile. They showed that
the heterophase junction constructed by using TiO2 nanobelt increases photocat-
alytic activity [49]. Figure 26.3 is a schematic illustration of the photocatalytic
mechanism owing to the heterophase junction. Moreover, the O2 production rate
was investigated with increasing calcination temperature. The highest O2 evolution
rate of 0.352 mmol h−1 g−1 was obtained due to the formation of anatase/rutile
heterophase junctions connections at 900 °C. TiO2 nanobelt calcinated at 600, 700,
800 °C were pure anatase, at 1000 °C was of pure rutile, and the O2 evolution rate
is 0.09, 0.124, 0.16 and 0.198 mmol h−1 g−1, respectively. Thus, constructed
anatase/rutile heterophase junctions enhanced carrier separation efficiency and
carrier recombination suppress.

Some non-metallic element dopings which are most commonly used in the
literature have been listed in Table 26.1. Non-metallic doping increases the light
absorption in the visible region of TiO2, enhancing the electron–hole separation, but
again they act as recombination centers due to the formed oxygen vacancies [5].
However, it was stated that the performance of the non-metallic doping could not
enhance the photocatalytic activity as much as metallic doping [96]. The advantage

Fig. 26.3 Schematic illustration of the photocatalytic mechanism of the rutile/anatase heterophase
junction a with and without Pt/CoP cocatalysts (Reprinted from Ref. [49] with permission from
Elsevier)
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of the non-metallic doping to metals does not act as electron traps, and they have
been used to improve photocatalytic activity by using this feature [298].

The p-states of the non-metallic elements mix with the O-2p states of TiO2 which
causes redshift on the valance band and the bandgap decreases. Nitrogen is one of the
most frequently used as dopants for TiO2. Likewise, C doped TiO2 also enables the
formation of new energy levels above the valence band, so the lower absorption
spectrum shifts to the higher wavelengths [12]. F-doped TiO2 is another non-metal
doping element, and they occupy the oxygen vacancies which are in the lattice rather
than doping into the TiO2. Thus, electron–hole recombination sites are reduced by
fluorine. Moreover, Du et al. stated that the reason why F doping decreases photo-
catalytic activity is that element F causes surface fluorination, not doping [55]. A very
high photocatalytic activity has been obtained by the F doping method by using
Mesoporous mesocellular foams as support for fluorine atoms in a study. In order to
increase the substitution of these atoms, the vacuum activation method was used to
boost the oxygen vacancies in TiO2, thus yielding Ti3+‐F lattice structures.

The F‐doped catalyst exhibits high photocatalytic activity and stability for H2

evolution under solar light irradiation with an AM 1.5 air mass filter. The success of
the technique attributed to the decrease of recombination sites by high concentration
F doping and the synergistic effect between lattice Ti3+‐F and surface Ti3+‐F [289].
Other single metal oxides used for photocatalytic applications other than TiO2

include ZnO [57, 87, 93], CeO2 [85], CuO [203], Cu2O [283], SnO2 [186, 225],
Fe2O3 [82], NiO [139], MoO3 [205, 344], WO3 [217], ZrO2 [68], Ag2O [268], Bi2O3

[266], In2O3 [90]. Besides defect engineering strategies such as surface hydro-
genation, metal reduction, and thermal treatment to create oxygen vacancies,
heterostructure engineering is considered to be another effective way of obtaining
photocatalysts with improved efficiencies [11]. For example, metal catalysts (Au, Pt,
Pd, Cu) and bimetallic catalysts (Au–M (M=La, Ni, Cu, Fe, Cr, Y), Pt–Cu, Pd–Cu)
are supported on various single and dual metal oxides to enhance the light absorption
capacity under UV light due to the Schottky barrier and SPR [40]. The photocatalytic
activity of the metal oxides can be improved by not only changing the morphology
(i.e., obtaining nanostructures with a core/shell structure) but also using binary metal
oxides (ZnO/V2O5 [8], ZnO/In2O3 [43], CeO2 supported on SiO2 fibers [89], Fe2O3/
TiO2 [16], Fe2O3/WO3 [178], ZnO Nanorod/a-Fe2O3 [251], NiO/V2O5 [175],
Bi2O3–BiFeO3 [163], SnO2/ZnO [341], WO3–BiVO4 nanostructures [120]) with
higher oxygen mobility over the surface, visible light activity. Besides precious
metals decorated binary metal oxides, ternary metal oxide nano-photocatalysts (CuO/
CeO2/ZnO [151] Bi2O3/Bi2SiO5/SiO2 microspheres [320]) with more efficient
photocatalytic performance have been studied. Moreover, QDs, carbon nanotubes,
g-C3N4 are used as sensitizers for photocatalytic metal oxide structures such as ZnO/
CdS [3], ZnO/CdTe [156], MoO3-MWCNT [219] ZrO2/g-C3N4 [94], etc. An
important class of metal oxide catalysts in green energy production is perovskite
oxides (such as titanate-based perovskites; ATiO3 (A=Ba, Ca, Co, Cu, Fe, Mg, Mn,
Ni, Pb, Sr, Zn), tantalite-based; KTaO3, NaTaO3, and other-metal-based perovskite
oxide photocatalysts like BaZrO3, LaFeO3, and LaMnO3 because of their excellent
absorption, bandgap tunability, and water splitting [185].
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26.3 Carbon-Based Nanomaterials

26.3.1 Graphene-Based Nanomaterials

Graphene (G) consists of a single layer of sp2 hybridized carbon atoms, arranged in
a 2D honeycomb lattice. In addition to being the thinnest material known, it is also
the most robust material with a 1GPa Young’ modulus [117]. Graphene synthesis
can be carried out either by the top-down approach via mechanical, chemical, or
electrochemical exfoliation methods or by the bottom–up approach via chemical
vapor deposition and chemical synthesis methods [20]. In Table 26.2, the methods
used to synthesize graphene-based structures are summarized, additively, the syn-
thesis methods of composite structures have also been shown.

Graphene has drawn attention in solar fuel applications due to excellent prop-
erties such as high stability, large specific surface area, the strong adsorption
capacity, high thermal and electrical conductivity [6]. The high surface area con-
tributes to the stabilization of the metal NPs, metal oxide, and quantum dot
structures because the expanded p orbitals of G overlap with the d orbitals of the
metallic structures [6]. Thus, it can be seen from the literature studies shown in
Table 26.2; the formed heterojunction contributes to the photocatalytic conversion
efficiently.

A well-known structure among various graphene derivatives is graphene oxide
(GO) which is obtained by the oxidation of graphene. Contrary to the hydrophobic
nature of graphene, GO containing hydrophilic functional groups (hydroxyl, car-
bonyl, carboxyl, epoxide) eliminates the problem of aggregation in aqueous solu-
tions [47]. GO has low electrical conductivity; however, it is increased by the
reduction of GO [21]. In a study, Zhu et al. used Ag NPs, CdS NRs, and reduced
graphene oxide(rGO) composite material as photocatalyst for CO2 reduction [345].
According to the result, it was determined that CO2 adsorption capacity of CdS was
5.01 cm3 g−1, while rGO–CdS and Ag–rGO–CdS were 6.60 and 6.02 cm3 g−1,
respectively. Increased adsorption indicates the positive contribution of RGO’s high
electrical conductivity, p–p conjugation between the rGO and CO2, higher surface
area (46.2 m2g−1) and large surface active sites. Moreover, both Ag and RGO act as
the electron acceptor, which expedite in the CO2 reduction reaction.

The degree of the reduction of GO can change the bandgap of the material,
which is essential in the photocatalytic applications [2]. The optical band gap
obtained by incorporation of G/GO into different materials is shown in Table 26.2.
It has been reported in the studies the existence of G or GO resulted in narrowed the
bandgap [74, 102, 141, 201, 220, 231, 242, 269, 335]. As a result of the bandgap
calculation with the Tauc plot analysis, Sorcar et al. found that doped GO amount
with 0.25, 0.50, or 0.75 ml to the reduced blue titania (RBT) reduced the bandgap
to 2.61, 2.41, 2.22 eV, respectively, which was 2.68 eV for pure RBT [231]. While
the produced C2H6 and CH4 amount increased for 0.25 and 0.50 doping, and it
decreased compared to the two for 0.75 doping. Similarly, Wang et al. detected CH4
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evolution for G-doped UIO-66-NH2, and the evolution decreased for UIO-66-NH2/
3.0GR compared to UIO-66-NH2/2.0GR [269]. The reason for the reduction is
attributed to the excessive graphene which covers the active regions of the MOF
structure. It is understood from the results that the optimum amount of G/GO doped
materials increase the CH4/H2 evolution.

Any other G-doped nanostructure is bismuth oxyhalides, which are materials
that may be the candidates for third-generation solar cell, can provide photocatalytic
activity with visible light [305]. Recently, PbBiO2Br/GO composite was produced
via hydrothermal method as a new novel material with different grams of GO [141].
The morphology can be seen in Fig. 26.4. The bandgap energy of the composite
was to 2.40 eV, which was lower compared to 2.47 eV bandgap energy of
PbBiO2Br. Thus, the composite material increased the photocatalytic conversion
rate from CO2 to CH4. This change has been attributed to the double-bond resonant
structure of GO which transports photo-generated electrons and suppresses the
electron–hole recombination of the photocatalyst. Although the conversion of CO2

to CH4 is thermodynamically favorite, the requirement of 8 electrons makes this
process kinetically complicated this process compared to the CO conversion, which
requires 2 electrons transfer. In a study in which CO2 conversion to CO was carried
out by using multi-leg TiO2 nanotubes wrapped with GO and rGO layer [204].

Fig. 26.4 SEM images of as-prepared samples by the hydrothermal autoclave method at different
grams of GO (Molar ratio Pb:Br = 5:5, temp = 250 °C, time = 12 h) (Reprinted from Ref. [141]
with permission from Elsevier)
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Multi-leg TiO2 nanotubes wrapped with GO and rGO were exposed to CO2 for
different periods. The rate of CO formation was observed to remain at the highest
level (760 µmol g−1) after 120 min for rGO wrapped nanotubes when compared to
GO wrapped and bare multi-leg TiO2 nanotubes. The high CO formation has been
attributed to the electrical conductivity of GO/rGO layers connecting adjacent
nanotubes which increased interaction between adsorbed CO2 and photo-generated
electrons.

The most important advantage of using graphene-based nanomaterials is that it
increases the energy conversion by enhancing the photoabsorption and electron–
hole separation with its high surface area. Moreover, the absorption spectrum of
doped graphene and graphene with layer stacking defects extends from UV to NIR,
which makes them an important class of material candidates for photocatalysis solar
light [6].

26.3.2 Graphitic Carbon–Nitride

Two-dimensional (2-D) graphitic carbon nitride (g-C3N4) has become interested
due to its unique properties such as its metal-free structure, easy preparation, high
thermal and chemical stability, low cost [146, 161, 181]. The g-C3N4 has the
photocatalytic activity under the visible-light with the bandgap of 2.7 eV [334].
However the photocatalytic performance of pure g-C3N4 is low, due to the rapid
recombination rate of the photo-generated electron–hole pair and low specific
surface area, but a growing number of studies exist about improvement in the
lifetime of charge carriers in the literature [62, 325].

In order to enhance the photocatalytic performance, heterostructures are formed
by combining with another semiconductor suitable for the band structure of g-C3N4

[62]. Li et al. classified the g-C3N4 heterojunction structures based on the charge
transfer routes and the characteristics of g-C3N4 as type-II, Z-scheme, S-scheme,
p-n heterojunctions and Schottky heterojunctions [135]. Type II heterojunctions are
constructed with metal oxides (TiO2 [7, 278, 284, 301, 336], CuO [301], ZnO [18,
100, 281] SnO [34, 263], Fe2O3 [200, 244, 294], CeO2 [154, 232], WO3 [28, 255],
metal sulfides (CdS [33, 73, 81, 132, 257, 340]), SnS2 [324], MoS2 [131, 260],
ZnIn2S4 [131, 202, 250]), metal telluride (ZnTe [264]) which have a more positive
valence band than g-C3N4. While type II heterojunctions are successful in
improvement of the charge carriers separation, the redox activity would be weak-
ened due to the migration of the electrons and holes to the lower level of CB and
VB, respectively [209]. For this reason, the charge transfer model inspired from the
green plants, g-C3N4 based Z-scheme heterojunctions systems have been developed
to ensure efficient separation of the charge carriers and to advance the redox activity
of the charges in the liquid phase [123]. The system, called the direct Z-scheme, has
been developed to perform electron transfer via solid materials instead of the liquid
medium [293]. One of the drawbacks of the Z-scheme heterojunction systems is
that the conductor material also absorbs light, and the light-harvesting efficiency of
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both photocatalysts is reduced. In another drawback is; if the Fermi level of the
solid conductor material which transfers the electron from the higher CB of one
photocatalyst to the lower VB of the other photocatalyst is lower than the photo-
catalysts, a Schottky barrier forms causing the suppression of the electron flow.
Besides, if the solid conductor during the synthesis is not precisely embedded
between the photocatalysts, it only acts as a co-catalyst instead of charge transfer
carrier [209, 292]. In order to eliminate these shortcomings, reduction photocatalyst
(RP) and oxidation photocatalyst (OP) is used in g-C3N4 based S-scheme hetero-
junction systems. The internal electric field, band bending, and Coulombic attrac-
tion ensure the driving force for the charge transfer [292].

Various methods such as heat treatment, photo deposition, pyrolysis, ion
exchange method, solvothermal and hydrothermal method, electrospinning method,
deposition–precipitation method have been used in order to synthesize of g-C3N4

based materials with controllable morphology. The photocatalytic activities of the
structures are summarized in Table 26.3 depending on the specific types of
heterojunction with particular application, bandgap, and synthesis method for the
composites.

Visible light responsive g-C3N4 material, which is an alternative to TiO2 due to
its unique properties, is being studied water splitting application for the efficient H2

evolution. In order to improve the drawbacks mentioned above, type II, Z-scheme,
and S-scheme heterojunction structures were developed to ensure high charges
redox ability and efficient charge separation, especially in S-scheme heterojunc-
tions, resulting in higher photocatalytic performance.

26.3.3 Carbon Quantum Dots (CQDs)

CQDs, which are zero-dimensional (0D) nanoparticles with sizes below 10 nm, are
attractive because of their many unique and novel properties [295]. Their optical
properties, fluorescence emissions, tunable bandgaps, and good chemical stability
make it a great candidate for solar fuel applications [149]. Top-down synthesis
approach with laser ablation, arc-discharge, and electrochemical oxidation, and
bottom-up approach hydrothermal/solvothermal, microwave pyrolysis methods are
known for the CQDs [13, 273]. During the synthesis process, the core structure of the
CQDs can be functionalized with rich oxygen‐containing functional groups such as
carboxyl and hydroxyl [13]. That functional groups provide hybridization between
CQDs and noble metals (NMs), which are turning up superior properties [65].

In solar fuel applications, CQDs increase the number of electron–hole pairs;
thus, the enhancing charge transfer promotes photocatalytic activity. The hydrogen
production mechanism has been depicted in four steps by using the carbon dots, as
shown in Fig. 26.5. First, light irradiation and photon absorption occur; secondly,
the electron in stimulated from the VB to the CB. Thirdly, the photo-produced
electrons pass to the semiconductor surface, and finally, the resulting electrons and
holes conduct the water-splitting process.
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Sun et al. coated the Ag NPs with the CQDs to investigate the photocatalytic
activity of the composite in which the highest photocatalytic obtained for AgNPs
with 16% CQDs. The methanol (CH3OH) formed as the main product by reduction
of CO2 in this reaction as 17.82 lmol after 10 h of illumination. The produced
CH3OH was three times more than the pure Ag catalyst [238]. Additionally, the
dispersion effects of the CQDs prevents the NPs from the aggregation, thus
increasing surface area is another crucial reason for the boosted photocatalytic
activity [65]. Cobalt monoxide (CoO), which also has an aggregation problem
during the synthesis, has high photocatalytic activity with 5% solar—to hydrogen
efficiency (STH) [138]. Since the conversion efficiency obtained as a result of CoO/
g‐C3N4 type II heterojunction systems were not optimal [261], this system was
combined with CQDs. The ternary CoO/g‐C3N4/CQDs system showed higher
photocatalytic activity with the optimum H2 conversion rate of 987.4 lmol g−1 h−1

compare to BiVO4/CQDs/CdS with 1.24 lmol/h and NiO/CQDs/BiVO4 with
1.21 lmol h−1 [223]. The highly efficient photocatalytic activities of the carbon
dots can be attributed to their electron-donating and accepting abilities, and possible
active surface sites [124].

Some limiting factors to use of CQDs are the low absorption for
long-wavelength, rapid decay in the initial excited state, long-term stability prob-
lem, and the weak interfacial interaction between carbon dots [149]. It is recom-
mended that the chemical structure of the CQDs should be investigated to enhance
charge transfer properties. Moreover, the future composite structures should be
formed with biomaterials and copper chalcogenide structures other than metal,
oxides, bismuth-based metal compounds, and carbon materials composite structures
which already exist in the literature [30].

Fig. 26.5 Schematic illustration of the mechanisms for A photocatalytic and
B photoelectrochemical hydrogen evolution (Reprinted from Ref. [71] with permission from
Elsevier)
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26.4 Metal Sulfide-Based Nanomaterials

Metal sulfides are one of the class of the semiconductor structures that are widely
used in photocatalytic reactions for the conversion of water into hydrogen fuel
using solar energy. The outstanding features; low cost, promising photocatalytic
activity, long lifetime, high absorption in the visible spectrum with great mobilities
of electrons and holes are the main reasons for their popularity [182]. Until today,
there are various heterogeneous and hybrid structures produced with metal sulfides
with superior properties for energy conversion [80].

The most commonly used structures in PEC applications of metal sulphides are
CdS, ZnS, FeS2, MoS2, CuS, Bi2S3 and Sb2S3. Top–down and bottom–up
approaches are used to synthesize these nanostructures. While the top–down
approaches consist of sputtering, electrospinning, lithography, exfoliation, and
milling; the bottom–up approaches have consisted of chemical vapor deposition,
atomic layer deposition, pyrolysis, thermal deposition, pulsed laser deposition,
micro-emulsion, precipitation, hydrothermal and solvothermal synthesis, elec-
trodeposition, and microwave irradiation techniques [27, 36].

Especially CdS have drawn attention with the narrower direct band gap of
2.42 eV compared to TiO2 which has 3.2 eV bandgap. Moreover, among the other
sulfide structures, CdS have favorable photocatalytic performance due to the
absorption wavelength, which is shorter 516 nm. This wavelength corresponds to a
broader absorption spectrum, again compared with TiO2, which absorbs the ultra-
violet light with a wavelength of less than 387 nm [36]. However, the main issue
that limits the use of CdS as photocatalyst is photocorrosion, lack of active sites, the
high photo-generated electron–hole recombination rate [329]. Different types of
heterostructures [243], co-catalysts incorporation [148], sacrificial reagents addition
[72], metallic/non-metallic catalysts coupling [308] have been utilized to overcome
the limitations.

Recently, Ren et al. have synthesized CdS coupled with a 2D Cu7S4 co-catalyst
nanosheets, which increase the active sites and electron transfer yield, for photo-
catalytic hydrogen generation application [206]. It will be useful to consider the
most striking aspects of this study based on the fundamental mechanism. The
electron–hole pair of CdS nanosheets (NSs) easily recombined under irradiation,
and H2 evolution rate is lower. Efficient separation of electron–hole pairs was
achieved by the presence of large contact areas, which is also shown by PL mea-
surements between CdS/Cu7S4 NSs. The H2 production for pure CdS increased
from 2.6 mmol g−1 h−1 to 27.8 mmol g−1 h−1 for CdS-2% Cu7S4 composite.
Moreover, the apparent quantum efficiency value of the composite decreased with
increasing light wavelength at 420, 450, 500, and 550 nm resulted in 14.7%,
12.3%, 9.6%, and 7.2%, respectively. Light absorption wavelength of the
heterostructure has affected the H2 evolution. As another literature study, the 10 wt
% CdS/g-C3N4 nanocomposite structure enabled the increase in the surface area and
the improvement of charge separation. The H2 evolution rate was increased to
216.48 µmol h−1 g−1, which is four times higher compared to pure CdS [97].
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However, it was found that the photocatalytic activity obtained with 20% CdS/
g-C3N4 nanocomposite was lower than pure CdS. This situation is attributed to the
fact that the number of electrons generated electrons from g-C3N4 may be decreased
by the shielding effect of CdS. The H2 production rate, experimental conditions,
and bandgap values of the composites which were obtained with high efficiency by
using sulphide-based nanostructures including CdS and MoS2 are shown in
Table 26.4.

Zinc sulfide, which belongs to II–VI group semiconductor, has been worked as a
photocatalyst due to the remarkable features such as thermal stability, nontoxicity,
and lower cost [118]. It has cubic zinc blende and hexagonal wurtzite crystalline
forms with the bandgap 3.72 eV and 3.77 eV, respectively [60]. As a result of this
wide-bandgap, UV light absorption for electron–hole separation occurs at
k < 340 nm wavelength. In order to use the advantages of ZnS in accordance with
solar fuel applications, efforts have been made to expand the light absorption in the
visible wave spectrum [118].

One of the attempts to decrease the bandgap of ZnS is the use of the proper
amount of dopant. For this purpose, Pang et al. modulated the electronic band
structure of ZnS using Ni dopant, which is a non-toxic metal [188]. They showed
that the photocatalytic CO2 reduction activity decreased as a result of the dimin-
ishment in sulfur vacancies with the increasing amount of Ni doping. The obtained
H2 evolution was almost nine times higher with 0.1wt% Ni dopant by using full Xe
arc lamp compare to pure ZnS.

The heterostructure formed by ZnS/ZnO, which has common anion, has been
synthesized for increased solar fuel production [127]. The lattice mismatch (15%)
between these two structures, the proposed Z-scheme system, and different
annealing time for in-situ growth of ZnO directly on the ZnS enabled this structure
to result in high H2 evolution compared to pure ZnS. These results show that the
particle size, shape, crystal structure, and degree of crystallinity which changes via
the thermal treatment, affect the charge separation of the nanostructures alike the
using various heterostructure and dopant materials.

MoS2, a 2D structure of transition-metal dichalcogenides (TMDCs), has been
widely used for solar fuel application to enhance hydrogen evolution. Its tunable
bandgap within the 1.2–1.9 eV depending on the number of the sheet layers, high
surface area, and abundant active sites are the advantages that make it able to be
modified to increase photocatalytic activity [280]. Methods such as mechanical and
chemical exfoliation, chemical vapor deposition are used in their synthesis [111].
While producing in large quantities is a drawback of mechanical exfoliation;
chemical exfoliation may result in a low yield due to the wild control of the
intercalation process with liquid and lithium intercalation. Besides, the toxicity of
the solvents used for intercalation and long reaction time for chemical exfoliation
are the other drawbacks for production of the MoS2 [280]. CVD is the ideal method
for large scale production, and it can provide high-quality MOS2 production by
controlling morphology, crystallinity, and defects [114].

MoS2 has been used to obtain different heterostructures with other semicon-
ductor materials which resulted in efficient solar energy conversion by changing
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interfacial charge transfer properties [37]. Cho et al. obtained a few layered MoS2/
CdS QD. It was stated that the catalytic activity of the system in the hydrogen
formation reaction (HER) would increase due to the enhanced carrier concentra-
tions [37, 119, 329]. According to the results of transient absorption spectroscopy,
ultrafast charge separation and long-lasting charge-separated states in heterostruc-
tures were obtained compared to bare MoS2. In the other study, MoS2 had been
used as a co-catalyst in the heterostructure which was produced by in situ sulfi-
dation of CdMoO4 nanooctahedrons for the production of CdS/MoS2 nanoocta-
hedrons [329]. The pure CdS exhibited poor HER activity, and lower photocurrent
density compares to bare MoS2. Moreover, the heterostructure of CdS/MoS2
showed highest HER activity photocurrent density. The results revealed that the
heterostructure was promoting the electron transfer across the interface with the
longest lifetime of photoinduced electron–hole pairs. The optimum H2 production
rate was in 27.16 mmol h−1 g−1 under visible light.

In an outstanding study in which MoS2 was used as a co-catalyst, the H2 pro-
duction rate was obtained as 275 mmol h−1 g−1 [119]. Co-doped MoS2/CdS
structure is obtained firstly, by producing the Co crystals via pulsed laser ablation in
liquid; secondly, Co dopped into a few layers of MoS2 by ultrasonication and lastly,
integrated with CdS. The synthesize steps can be seen on Fig. 26.6. The reasons to
be achieved the high H2 evolution rate by the system are; activation of the MoS2
basal plane with the appropriate size (3.1 nm) and concentration of dopant,
enhancement of the optical and electronic properties due to the crystal size of the
dopant, and the exfoliation of MoS2. Moreover, the heterostructure has demon-
strated superior stability up to 5 cycles successfully for the long-term stability test.

The H2 production rate, experimental conditions, and bandgap values of the
composites which were obtained with high efficiency by using sulphide-based
nanostructures except MoS2 and CdS are shown in Table 26.5.

A novel structure, Z-scheme WO3/CdS/WS2 tandem heterostructure has been
synthesized first embedding the WO3 nanocrystals into WS2 nanoplate via the
in-situ sulfurization of bulk WO3 [297]. Afterwards the monodispersed CdS
nanograins anchored on the ultrathin WO3/WS2 nanoplate. WO3 has higher oxi-
dation potential in the valence band, and CdS has a higher reduction potential in the
conduction band. This situation makes the direct Z-scheme heterojunction possible
to form between WO3 and CdS. Additionally, WS2 has been used as a co-catalyst
which has a direct band on 1.9 eV. Its large surface area makes it easier to couple
with photo absorber across the entire surface and WS2 is the origin of the unsat-
urated sulfur atoms at the edges. This system efficient spatial charge separation
resulted in highly efficient H2 evolution of 14.34 mmoL h−1 g−1 with 22.96%
quantum efficiency. Figure 26.7a and b shows the H2 evolution of the pure and
heterostructures for WS2/CdS/WO3. The pure WO3 does not have hydrogen pro-
duction because of the unsuitable conduction band potential. WO3/WS2 nanoplate
composite, also, does not generate the H2 due to the rapid recombination of
photo-generated electrons and holes. The CW-3 (WS2/CdS/WO3) heterostructure
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has the highest H2 evolution rate. As well, the dosage of the 2D ultrathin WO3/WS2
nanoplate matrix also has a control on the photocatalytic H2 production. As shown
in Fig. 26.7c, the stability of the CW-3 composite did not decrease after six cycles,
and AQE was found as 0.88% at 700 nm (Fig. 26.7d).

26.5 Transition Metal Phosphides (TMPs)

Metal transition phosphites are the superior materials that can be an alternative to
noble metals with good photocatalytic performance and are even cheaper, abundant,
and highly stable [279]. The photocatalytic performance increases due to the
electronic structure of the phosphorus in the TMP structure [199], besides the types
of different metals and the metal/phosphorus ratio also contribute to the photocat-
alytic activity. Other types of metal phosphites were produced for solar fuel
application such as BP [246], CoP [143], Co2P [122], Ni2P [328], MoP [144], Cu3P
[241], FeP [53], RuP2 [230], WP2 [195], NbP [70] and NiCoP [92]. The elec-
tronegative nature of P atoms limits the electron delocalization of metals, which

Fig. 26.6 Schematic illustration of the synthesis of CdS/Co–MoS2 nanocomposites. Step I:
Size-controlled cobalt nanocrystal synthesis via PLAL using 532-nm Nd:YAG laser with different
laser fluence (0.32, 0.64, 0.96, 1.91, 2.86 and 3.82 J/cm2). Step II: Formation of bulk
MoS2 nanosheets through hydrothermal synthesis. Step III: Formation of few-layer Co–
MoS2 nanocomposites using ultrasonication. Step IV: Integration of ultrathin Co–
MoS2 nanosheets on 1D–CdS nanorods by ultrasonication and long-time magnetic stirring to
generate interfacial contact between CdS and Co–MoS2 nanostructures (Reprinted from Ref. [119]
with permission from Elsevier)
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decreases conductivity. As the P content increases, the structure can be a semi-
conductor or even insulator. Electronegative P atoms trap protons and stabilize the
activation of H2 atoms attached to the surface [208]. Thus, it is known that the
obtained hydrogen evolution activity is greater in CoP than Co2P and MoP than
Mo3P [23, 286].

TMPs have relatively high photocatalytic conversion rate results in the literature
studies. A heterostructure, CoxP/CdS, which has the H2 evolution of 500 mmol
g−1 h−1 was formed by the photochemical method for illumination time up to
50 min [52]. It has been observed that the conversion activity increased by 85 times
compared to pure CdS with increasing illumination time. After the 50th minute, the
surplus amount of CoXP caused lowering in oxidation reaction sites on the CdS
surface, resulting in lower hydrogen evolution. This indicates that composition
optimization has a crucial role in modifying photocatalytic activity.

The synthesis methods of TMP nanostructures can be classified according to
organic and inorganic phosphorus sources [25, 52]. The organophosphorus,
tri-n-octylphosphine (TOP), and triphenylphosphine (TPP), have been used as
phosphorus sources by breaking the C–P bond with high-boiling organic solvents at
temperatures up to 300 °C. Thus, replacement with a metal precursor can be
achieved for TMP synthesis [25]. Hypophosphites are used as inorganic P sources
which are decomposed above 250 °C and following by the reaction between metal
precursor and PH3 via CVD method. Alternative methods such as hydrothermal
synthesis, a gas–solid response, phosphorization take place under high tempera-
tures. Considering the scope of green synthesis, microwave-assisted and PH3

Table 26.5 Typical photocatalytic H2-production systems of metal sulfides

Catalyst Synthesis
method

H2 production
rate
(lmol g−1 h−1)

AQY (%)/
Wavelength
(nm)

Light
source

Optical
bandgap
(eV)

References

NiS/
g-C3N4

Photodeposition 244 – LED
lamps

g-C3N4/
2.7

[259]

ZnS/Cu Ion-exchange 1000 17.6/
410 ± 10

150 W
Xe
lamp

3.36 [44]

Zn1-xCuxS Hydrothermal 1296 2.48/365 Xe arc
lamp

*3.5 [153]

WS2/CdS/
WO3

Hydrothermal 14,340 22.96/435 300 W
Xe
lamp

2.32 [297]

SnS2/
CdS/
Nb2O5

Ultrasonication 55,887 lmol g−1 0.65/425 300 W
Xe
lamp

*1.96 [162]

CuSbS2 Hot-injection 2140 – 1.46 [214]

FeCoS2/
CoS2

Solvothermal 28.1 lmol h−1

(per o.5 mg
catalyst)

– 300 W
Xe
lamp

– [272]
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plasma methods seem more suitable to conduct the synthesis for shorter reaction
times by avoiding the high-temperature conditions [25].

The MoP is another TMP structure that draws attention with its similar electronic
structure of Pt and its high conductivity [311]. In a study, it was used as a cocatalyst
with CdS to construct a heterostructure [302]. The first drawback of the synthesis is
the agglomeration which results due to the high-temperature phosphorization pro-
cess. The second drawback originates from the TOP route due to its the toxicity,
low yield, and complex operation [271]. These problems were solved by synthe-
sizing freestanding ultra-small MoP quantum dots at low temperatures. The
pyrolysis of ammonium molybdate and subsequent calcination steps at different
temperatures were used for the synthesis of MoP, and then it has been dispersed
with commercial CdS. The photocatalytic H2 evolution rate of 0.60 mmol h−1 g−1

and 13.88 mmol h−1 g−1 were obtained for the pure CdS and MoP/CdS, respec-
tively. This highly stable photocatalytic performance obtained is 1.44 times higher
than Pt cocatalyst with AQY (420 nm) 66.7%.

Table 26.6 shows the synthesis methods of different TMP composite structures
with high-performance hydrogen evolution rates, the conditions in which the
experiments performed based on the recent literature studies.

Fig. 26.7 a Time-dependent amounts and b the rates of H2 evolution over different samples under
visible light irradiation (k > 420 nm); c Recycling H2 evolution and d wavelength-dependent
AQE of H2 evolution from the CW-3 composite (Reprinted from Ref. [297] with permission from
Elsevier)
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26.6 Metal Oxide Frameworks (MOFs)

MOFs are the crystalline hybrid materials consisting of metal ions as inorganic
metal centers connected by organic ligands [86]. Metal‐organic frameworks
(MOFs) materials have attracted photocatalytic H2 generation application due to
high surface area, high porosity, superior visible light absorbance, tunable bandgap,
designable structure, good thermal and chemical stability [338]. However, the low
conductivity of the MOFs limits their photocatalytic efficiency. The coordinatively
unsaturated metal sites and the active groups on the organic linkers in MOF
structures provide catalytic activity. The limits of the catalytic activity can be
changed by functionalizing the metal sites, organic linkers and confining the pores
[99, 142]. As an advantage, the high porosity of MOFs minimizes electron–hole
recombination due to their short transport distance. The charge separation and
photocatalytic activity will be increased by the addition of the electronegative
structures to the MOFs [99].

MOF nanostructures can be synthesized by several methods, including
solvothermal [59], layer by layer growth [1], electrochemical deposition [147],
chemical vapor deposition [310], atomic/molecular layer deposition methods [172].

The incorporation of noble metals (Au [327], Ag [26], Pd [35], Pt [288], Rh [19],
Ru), non-noble metals (Co [140], Cu [67], Fe [235], Ni [32]) has been carried out in
previous studies in which the photocatalytic activity increased via the functional-
ization of the MOFs. The large pores of the MOFs provide an ideal host for
nanoparticles (NPs) and single atoms (SAs). Taking advantage of this feature, NPs
and/or SAs of Ru3+ incorporated NH2‐MIL‐125/N‐doped TiO2/C was produced by
using NH2-functionalized MOF, which provides stabilization of metal cations
[299]. The highest rate of H2 evolution reached 100.0 µmol h−1 for NPs/SAs Ru3+

incorporated MOF. The evolution rate is higher than 58.3 µmol h−1 for Ru3+

composite structure where the only single atom is used, and it is higher than
83.9 µmol h−1, which belongs to Pt/N-doped TiO2 MOF material. The obtained
performance has been attributed to the synergistic coupling between Ru nanopar-
ticles and single atoms.

Nanoparticles (NPs) of noble metals (i.e. Ag, Au, Pt) which are active reaction
sites can powerfully harness their surface plasmon resonance (SPR), accordingly,
they absorb the visible light [262]. However, due to the high cost of the novel
metals, non-noble-metal MOF analogues have been developed for
high-performance catalytic activity. Moreover, the mixture of the different species
of MOF heterostructures with carbon [128, 245], metal oxides [63], metal sulfides
[245] covalent organic frameworks (COF) [84], phosphide [125] based materials
have been produced for high photocatalytic performance. The recent studies are
summarized in Table 26.7 based on the high photocatalytic performance of MOF
systems.

MOFs have tunable porosity, metal centers, and organic ligands which provide
advantages in their use. These properties render them the right candidate in catalytic
applications such as CO2 capture and H2 evolution. In recent years, the studies
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resulted in high conversion efficiencies by using the MOF structures. While it is an
advantage to be produced especially with low cost, MOFs may have stability
problems due to factors such as pH and temperature due to organic linkers [253].
Besides, material production on the industrial scale is still another limiting factor.

26.7 Summary

Today, it is known that among the usage of energy resources, renewable energy
sources are in demand due to the environmental effects of non-renewable fossil
fuels. Solar energy has a greater potential than the total energy of all renewable
energy sources. It is quite reasonable to use H2 as a solar fuel in order to realize the
energy generation of fuels obtained from the sun, and photocatalysts are used to
achieve this conversion. Nanomaterials have been used in different types and
structures to understand its advantages and disadvantages, to provide high H2

conversion, and to carry out the conversion both efficient and stable. In this chapter
of the book, the semiconductor nanomaterials as metal oxides, metal–organic
frameworks, carbon-based materials, metal sulfides, and phosphides have been

Table 26.7 Typical photocatalytic H2-production systems of MOFs

Catalyst Synthesis
method

H2 production
rate
(mmol g−1 h−1)

Light
source

Optical
bandgap
(eV)

References

NH2‐UiO‐66-MOF/
TpPa‐1‐COF

One-pot
synthesis

23.41 300 W
Xe
lamp

2.02/
TpPa‐1‐
COF
2.88/
NH2‐
UiO‐66

[314]

MOF-Cu(I) Solvothermal 4.21 500 W
Xe
lamp

2.13 [31]

Pt/MIL-125-(SCH3) Solvothermal 3.8 350 W
Xe
lamp

2.69 [78]

MIL-125/g-C3N4/TiO2 Calcination 0.606 300 W
Xe
lamp

3.04 [277]

UIO-67/Ru/Pt Solvothermal 1.13 150 W
Xe
Lamp

– [303]

NH2-MIL-125 (Ti)/
benzoic
acid-functionalized
g-C3N4

Solvothermal 1.123 300 W
Xe
lamp

2.60/
NH2-
MIL-125

[337]
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summarized in view of their usage in photocatalytic conversion. The synthesis and
design of the materials and their hybridized structures, doping, heterostructures with
each other for the enhanced photocatalytic conversion were discussed in each
section. It has been emphasized that each combination performs uniquely
depending on both bandgaps and synergetic effects of combination with each other
and also the contributions of morphology, crystallinity, composition ratios to this
efficiency. The literature studies prove that the different designs of these structures
and their stability, performance, and reproducibility can be changed. It can be said
that in the near future, for the efficient use of solar fuels, nanomaterial engineering
will proceed in the direction of structures that allow industrial production with
different interfaces, morphology, and compositions.
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