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A field-deployable water quality monitoring with machine
learning-based smartphone colorimetry

Vakkas Doğan,a Tuğba Isık,b Volkan Kılıç∗,a and Nesrin Horzumc

Water quality monitoring is an increasing global concern as the pollution of water sources causes
adverse effects on economic growth and human health. Traditional approaches to the detection of
pollutants are time-consuming and labor-intensive due to the requirement of sophisticated equipment
or laboratory settings. Therefore, portable devices featured with rapid response and easy operation
are indispensable in water quality monitoring. Herein, a smartphone-based colorimetric pollutants
quantification is demonstrated under a machine learning (ML) framework. As a proof of concept,
the presence of seven ions in water was analyzed using colorimetric strips. The color variation on the
strip indicators was captured in eight lighting conditions with five smartphones, providing robustness
against the illumination variation and camera optics for ML classifiers. Color and texture features
were extracted from the images to train the classifiers. Among the twenty-three classifiers, K-nearest
neighbor exhibits the best classification performance, leading to the integration with our custom-
designed Android application called Hydro Sens. The proposed approach was also tested with real
samples taken from local water sources. The results prove that incorporating color strips with ML
under a smartphone application can be used for water quality monitoring, which offers promising
alternatives for sophisticated equipment that is especially applicable in resource-limited settings.

1 Introduction
The presence of a wide range of contaminants such as pesticides,
pharmaceuticals, drugs, hospital effluents, and other industrial
compounds has been threatening the aquatic environments at ng
L-1 to µg L-1 levels. The uncontrolled growth of population and
industrial activities cause the rapid consumption of natural re-
sources, mainly water. The pollution of surface water and ground-
water generally causes adverse effects on aquatic and human life
that micro-pollutants can reach up to drinking water and threaten
human health1,2. Each year, nearly 30 million people die because
of the fatal diseases (diarrhea, cholera, dysentery, typhoid, and
polio) caused by contaminated drinking water3. Moreover, pol-
luted water destructs biodiversity triggering the proliferation of
undesired organisms and contaminating the food chain by intro-
ducing toxic substances into foods. Therefore, the quality of wa-
ter sources has become a serious concern for both environmental
considerations and human health.

Water quality is specified by physical, chemical, and biologi-
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cal parameters. Some parameters such as electrical conductivity,
pH, type and quantity of dissolved, suspended or colloidal sub-
stances can be measured onsite. However, chemical parameters
like heavy metal contamination (e.g., the presence and balance
of major/minor ions) require traditional monitoring systems4,5.
On the other hand, monitoring the water quality in rural areas
is difficult due to the lack of well-equipped laboratories requir-
ing specialist labor. In addition, sample collection from different
locations is another concern due to the transfer and storage prob-
lems6.

In water quality monitoring, there are several analytical tech-
niques based on electrochemical, spectrometric, and colorimet-
ric approaches7. A representative method in the electrochemi-
cal technique is capillary electrophoresis and inductively coupled
plasma mass spectrometry (ICP-MS) is the most widely used spec-
trometric technique that provides the measurement of multiple
elements in water samples. However, these techniques require
time-consuming sample preparation procedures and expensive in-
struments with expert users. Thus, they cannot be performed on-
site applications8.

For rapid and on-site pollutant analysis, colorimetric meth-
ods for naked-eye detection are the most convenient in terms
of simplicity and portability. Basically, the concentration of an-
alytes is determined with a reaction between analyte and color
reagent. Rider et al. performed colorimetric nitrite analysis using
4-aminobenzenesulfonic acid and 1-aminonaphthalene as color
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Fig. 1 The number of indicators used in the project of seven different
ions.

reagents9. Adarsh et al. developed a novel colorimetric aza-
BODIPY based probe for the detection of nitrite ions for on-site
detection10. Plasmonic nanostructures (gold and silver nanopar-
ticles) are sensitive biosensors due to surface plasmon resonance
(LSPR), which leads to intense color measurement11. In addi-
tion, gold and silver colloids can be used for colorimetric sen-
sor fabrication as their LSPRs are in the visible spectrum. How-
ever, the high fabrication cost of these sensors is still an issue for
widespread application.

Lab-on-a-chip designs have also been proposed for the colori-
metric detection of analytes in water12,13. However, extending
the lab-on-a-chip technologies at consumer level is limited be-
cause of the need for an external detection system to interpret
the signal from the chip and provide the data for user. Portable
smartphone-based detection systems provide a low-cost option
for lab-on-a-chip design that smartphones are able to capture im-
ages with high resolution even in low-light conditions. Besides,
they are portable, fast, do not require special training, and their
widespread usage makes this technology accessible to everyone.
Smartphones can be used as colorimeter,14, spectrometer15, flu-
orometer16, and voltammeter17. Most often used smartphone
applications rely on digital image colorimetry and image analy-
sis18. In this way, the use of smartphones as chemical detectors
is becoming widespread in various fields such as medicine19–22,
food23,24, and environment25,26. Hossain et al. presented a “lab-
in-a-phone” platform with a pH sensor concept to detect any pos-
sible contamination in drinking waters. They established an effec-
tive real-time pathogen mapping of a specific location using GPS
coordinates27. Kılıç et al. proposed a local database to quantify
the concentration of solutions and they used a single image to
determine four water quality parameters, which are nitrite, phos-
phate, chromium, and phenol concentrations. An Android appli-
cation (Chem Trainer SIR) was tested and the results show that
the detection accuracy can reach up to 100% with the help of
color matching algorithms28. Moreover, Gan et al. developed a
smartphone-based colorimetric system with functionalized gold
nanoparticles to detect cadmium species29.

Table 1 Camera properties of the smartphones used in capturing.

Smartphone
Brand

Image
Resolution

Optics
Camera

Resolution
Asus Zenfone 3 4032×3024 f/2 16 MP

HTC One A9 4160×3120 f/2 13 MP
LG G4 5312×2988 f/1.8 16 MP

Samsung Galaxy A5 4608×3456 f/1.9 13 MP
Sony Xperia T2 Ultra 4128×3096 f/2.4 13 MP

For the colorimetric quantitative analysis, intelligent systems
are emerged as a useful tool to process various independent vari-
ables due to their high computing performance on large amount
of data. In this regard, artificial intelligence (AI) methods have
been used to enable the learning of computing devices with-
out a need for human intervention30,31. The advances in AI
help to improve the measurement techniques in various fields
such as environmental data monitoring32–35, weather forecast-
ing36,37, medical imaging38, diagnosis39–41, agricultural man-
agement42,43, and disaster prediction44,45. Tinelli et al. simu-
lated the bio-contamination risk in the water distribution systems.
They proposed an effective monitoring system that provides real-
time information that reduces potential harm to citizens46. One
of the methodologies in AI is machine learning (ML)47. Li et al.
successfully analyzed the wastewater samples from lagoons ap-
plying ML methods and estimated the water quality parameters
such as nitrogen, phosphorous, bacteria, and total solids48.

In addition, a smartphone-based colorimetric detection
through ML allows researchers to employ handheld devices for
a variety of colorimetric tests in limited-resource settings49. As a
representative example, a smartphone platform that enables the
determination of the pH levels using ML was proposed30. Solmaz
et al. demonstrated a smartphone application-based colorimet-
ric peroxide detection using ML classifiers trained in very diverse
experimental settings such as different light sources and hand-
sets50. In addition, colorimetric detection of enzymatic and non-
enzymatic glucose using ML classifiers has been recently reported
in41,51.

In this study, a ML-based smartphone colorimetry approach
is proposed to monitor water quality that can be deployed in
fields and remote environments. The color change in the indi-
cator due to the presence of chemicals (i. e., ammonium, ar-
senic, carbonate, chloride, iron, nitrate, sulfate) is captured with
a smartphone camera to detect the concentration using a ML clas-
sifier. In this regard, the classifiers are trained separately for each
ion, with a relevant dataset containing color and texture features
extracted from the captured images. The K-Nearest Neighbors
(KNN), which has the highest accuracy among all classifiers, is
integrated into our custom-designed Android application Hydro
Sens. The proposed approach is also tested with real samples
taken from local water sources. The results prove that the pro-
posed smartphone colorimetry has great potential for water qual-
ity monitoring in resource-limited settings and remote environ-
ments.
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Fig. 2 Schematic illustration of the water quality monitoring approach. The color change in the indicators of strip was imaged using a smartphone
camera under various combinations of fluorescent, sunlight, and halogen sources.

2 Experimental Methods

2.1 Materials

All the chemicals were of reagent grade and used without further
purification. Ultrapure water (Milli-Q Millipore 18.2 MΩ·cm−1 at
25◦C) was used throughout the study.

Synthetic solutions were prepared using sodium sulfate
(Merck, ≥ 99.0%), iron(II) chloride (Sigma-Aldrich, 98.0%), am-
monium acetate (Merck, 98.0%), sodium nitrate (Supelco, ≥
99.5%), calcium carbonate (Sigma-Aldrich, ≥ 99.0%), arsenic(V)
oxide (Merck, 99.0%), and sodium chloride (Sigma-Aldrich, ≥
99.0%) to identify the color codes to the system. The concentra-
tion of solutions was adjusted according to the defined range on
each test strips (Fig. 1) (MQuant®) as follows: sulfate (200 - 400
- 800 - 1200 - 1600 mg L−1 SO−

4
2), iron (3 - 10 - 25 - 50 - 100 -

250 - 500 mg L−1 Fe+2), ammonium (10 - 30 - 60 - 100 - 200 -
400 mg L−1 NH+

4 ), arsenic test strips (0.005 - 0.010 - 0.025 - 0.05
- 0.10 - 0.25 - 0.50 mg L−1 As), nitrate test strips (10 - 25 - 50 -
100 - 250 - 500 mg L−1 NO−

3 ), carbonate hardness (4 - 8 - 12 - 16
- 24 °d), and chloride (500 - 1000 - 1500 - 2000 ≥ 3000 mg L−1

Cl−).

2.2 Experimental design and image capturing

An experimental setup was designed to create a dataset for train-
ing ML classifiers. The requirement from the classifiers was to be
robust to any illumination change, leading to more accurate re-
sults regardless of the smartphone brand. Therefore, the dataset
needed to be enlarged with images captured under several cam-
era optics and various illumination sources to meet this require-
ment. In that sense, halogen (H), fluorescent (F), and sunlight
(S) bulb sources were used to imitate the indoor lighting condi-
tions. Besides, images were also taken in daylight (D) under the
clear sky to include the outdoor conditions in the dataset.

The bulbs for indoor imaging have unique properties. The color

temperature of the halogen (Osram 60 W) is 2700 K (warm), and
the color rendering index (CRI) is 80, while the fluorescent (Klite
6 W) color temperature is 4000 K (neutral) and the CRI value is
80. The sunlight (Philips 5.5 W) bulb has a 6500 K (cold) color
temperature and a CRI of 90. Seven lighting conditions (H, F,
S, HF, HS, FS and HFS) were obtained with both individual and
combinations of these bulbs. The distances of the bulb sources to
the smartphones during imaging were kept constant at 40, 44 and
48 cm for H, F and S, respectively. In addition, images were taken
at 37º angle of incidence with a distance of 15 cm between the
smartphone and strips. Images were captured with a smartphone
camera after the strips were dipped into the prepared synthetic
solutions as illustrated in (Fig. 2).

In this study, five Android (Asus Zenfone 3, HTC One A9, LG
G4, Samsung Galaxy A5, and Sony Xperia T2 Ultra) smartphones
with different camera properties (Table 1) were used to offer
inter-phone repeatability. Furthermore, the camera settings of
the smartphones were used in automatic mode to capture forty
images (5 smartphones under eight lighting conditions) for each
ion (ammonium, arsenic, carbonate, chloride, iron, nitrate, and
sulfate).

2.3 Feature extraction and machine learning analysis

Feature extraction is the process of obtaining distinctive features
representing an object based on color, texture, size, shape, and
location, which is an essential step in training ML classifiers34,51.
Here, image features are extracted based on color and texture
information only, as it has been found to be adequate based on
extensive experimentation. After the region of interest (ROI) was
cropped, it was converted from RGB (Red-Green-Blue) to HSV
(Hue-Saturation-Value) and L*a*b* (Lightness, Green-Red, Blue-
Yellow) for each concentration to obtain in R, G, B, H, S, V, L*, a*,
b* color channels separately as HSV is more robust towards exter-
nal lighting changes and L*a*b* is particularly useful for boost-
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Table 2 ICP-MS operation parameters

Operation Parameters Value
RF power 1550 W
Frequency 27 MHz
RF matching 1.78 V
Makeup glass flow rate 0.15 L min−1

Argon carrier gas flow rate 0.95 L min−1

Chamber temperature 2 ◦C
Sample depth 8 mm
Nebulizer Concentric
Nebulizer pump 0.1 rps
Tune setting (m/z) 7/89/205
Isotopes monitored (m/z) 75As, 56Fe

ing colors in images due to the way they handle colors which
offers more distinguish features for the training of machine learn-
ing classifiers. A sample converted images from RGB to HSV and
L*a*b* are given in Fig. S1, ESI. Then, mean, standard devia-
tion, skewness, and kurtosis values were calculated for each color
channel. Moreover, contrast, correlation, homogeneity, and en-
ergy were extracted as texture properties, leading to forty features
to be used in training. The equations for the feature extraction are
given in Section S1, ESI. In this study, all these features have been
employed in training. However, the number of the features can be
reduced by applying feature selection or dimensionality reduction
methods.

In this study, twenty-three ML classifiers were trained in MAT-
LAB (MathWorks, MA, USA) to determine the quality of water
based on the color change caused by the ions in the solution. The
k-fold cross-validation technique was used in training where the
k value was chosen as 10. The performance of classifiers was
measured with evaluation metrics including classification accu-
racy, precision, recall and F1-score to determine the outstand-
ing classifier. The KNN, a sample-based classification algorithm,
outperformed other classifiers and therefore, integrated into our
custom-designed smartphone application called Hydro Sens. In
KNN, K closest (most similar) samples are determined from the
dataset for the input sample. Then, the input sample is assigned
to the class label based on the majority voting of its nearest neigh-
bors.

2.4 Smartphone application: Hydro Sens
The KNN was integrated into our custom-designed Android-based
Hydro Sens application due to its performance. Hydro Sens, with a
simple and user-friendly interface, transfers images from a smart-
phone (Android) to a server (MATLAB), which runs a ML classifier
to classify the relevant ion in water. Firebase Cloud System has
been used to enable communication between the smartphone and
remote server as it supports both Android and MATLAB.

When the user enters into the Hydro Sens application to deter-
mine the concentration of an ion in the water (Fig. 4(a)), the user
is asked to capture a new image using the smartphone camera or
select an image from the gallery. After an image is selected from
the gallery (Fig. 4(b)), it is displayed on the screen to double-
check as in Fig. 4(c). The user must tap the crop button to

Table 3 Results of the highest classification accuracy in KNN for seven
different ions in the water.

Ions Classification Accuracy (%) LOD (mg/L)
Ammonium 98.69 7.85

Arsenic 95.63 0.04
Carbonate 98.10 15.88
Chloride 99.95 479.86

Iron 97.88 2.27
Nitrate 98.45 6.41
Sulfate 99.72 100.16

define the ROI on the image. The ROI is cropped using an ad-
justable crop box, as shown in Figs. 4(d) and (e). The cropped
patch is displayed on the application screen, as shown in Fig. 4(f),
and is sent to MATLAB via Firebase with the upload button. The
KNN classifies ions based on color and texture features. Fig. 4(g)
shows that the ion information is sent after tapping the “APPLY
NOW” button, which initiates the classification process in the re-
mote server. The result is sent back to Hydro Sens via Firebase, as
shown in Fig. 4(h).

2.5 Instrumentation and analysis
The concentrations of As and Fe ions were determined using an
Inductively Coupled Plasma–Mass Spectrometer (ICP-MS) (Agi-
lent 7500ce Series, Japan). The ICP-MS operation parameters are
given in Table 2. Four main stock solutions (10 mg L−1, 1 mg
L−1, 100 µg L−1, and 10 µg L−1) were prepared by dilution of
1000 mg L−1 As (V) and Fe (II) stock solutions. Then, standard
solutions varying concentrations between 0.05 µg L−1 to 1000.0
µg L−1 were prepared by appropriate dilution of main stock solu-
tions. Germanium internal standard was used in ICP-MS analyses
for the samples and standard solutions at the same concentration
to improve the precision of analysis. Afterwards, all solutions
were acidified with HNO3 to achieve 1.0% (v/v) acid in the final
solution.

Ion chromatography (IC) with a conductivity detector was used
to determine ammonium, carbonate, chloride and nitrate concen-
tration (Dionex ICS-5000+ Ion Chromatography System, Thermo
Scientific). The samples were filtered through PTFE filters with
0.45 µm pore size, stored in polyethylene bottles and analysed
directly without further process. Dionex IonPac AG19 guard col-
umn (4 × 50 mm) and AS19 analytical column (4 × 250 mm)
were used for anion analysis, whilst Dionex IonPac CG16 guard
column (5 × 50 mm) and CS16 analytical column (5 × 250 mm)
were used for cation analysis. The chromatographic run was per-
formed with 1 mL min-1 flow rate and 20 µL injection volume.
The column temperature was 30 ◦C and 40 ◦C, and the eluents
were methanesulfonic acid (30 mM) and potassium hydroxide
(10 mM) for anion and cation analysis, respectively. The nat-
ural water samples contain various acid-base pairs that can ac-
cept/donate protons. Total alkalinity is the ability of an aqueous
sample to neutralize an acid. The alkalinity of most waters comes
from carbonates, bicarbonates, and hydroxides52. The samples
were collected in polyethylene bottles. For the standard solu-
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Table 4 Classification accuracy of the KNN with respect to visual test and IC device results for water samples taken from different districts of Izmir.

Ammonium Carbonate Chloride Nitrate

Visual Test (%) IC (%) Visual Test (%) IC (%) Visual Test (%) IC (%) Visual Test (%) IC (%)

Balcova 52.75 87.75 69.80 82.65 97.85 97.85 44.75 67.25

Buca 87.75 87.75 72.75 79.75 92.75 92.75 84.85 84.75

Kemalpasa 82.75 82.75 60.25 60.25 79.75 79.75 82.65 82.65

tion, 0.1 N sulphuric acid (H2SO4) was prepared against 0.05 N
sodium carbonate (Na2CO3). The analysis was performed using
an automatic potentiometric titrator (AT-510, Kyoto Electronics
Manufacturing, Japan) and an automatic piston burette (APB-
510, Kyoto Electronics Manufacturing, Japan). 100 mL of each
sample were taken, titrated with 0.2 N standard (H2SO4) and the
results were calculated from the endpoints of samples.

3 Results and Discussion
Here, a ML-based colorimetric detection was employed using
color variation in test strips caused by seven different ions. A
comprehensive dataset was created as the capacity has a positive
effect on the accuracy of the classifier. To create the dataset, test
strips of seven different ions were sequentially immersed in water
and then removed. The color changes in the strips were captured
with five different brands of smartphones under eight different
lighting conditions. The images were then transferred to the com-
puter for preprocessing and training in the MATLAB environment.
The strips may have a different number of indicators as given in
Fig. 1. Test strips for ammonium, arsenic, carbonate, iron, and ni-
trate ions have one indicator while sulfate and chloride have four
and five indicators, respectively. The highlighted region on the
indicator (Fig. 1) was cropped for feature extraction. Then, the
dataset was created for each ion using color and texture informa-
tion as described in Section 2.3. Twenty-three ML classifiers were
trained with these datasets and the KNN outperforms others for
all ions. The comparative evaluation of KNN with other classifiers
was given in Table S1, ESI.

The performance of the classifiers was compared with classifi-
cation accuracy (Eq. 1), precision (Eq. 2), recall (Eq. 3), and
F1-score (Eq. 4).

Accuracy =
TP+TN

TP+TN+FP+FN
, (1)

Precision =
TP

TP+FP
, (2)

Recall =
TP

TP+FN
, (3)

F1-score = 2× Precision×Recall
Precision+Recall

, (4)

True Positive (TP) is the positive class label correctly predicted
by the classifier, while True Negative (TN) is the negative class
label correctly predicted by the classifier. False Negative (FN) is
defined as the negative class label that was incorrectly predicted
by the classifier, while False Positive (FP) is referred to as the

positive class label incorrectly predicted by the classifier53. The
accuracy value is calculated by the ratio of the correctly predicted
labels in the model to the total dataset. Precision refers to how
many positively predicted values are actually positive54. Recall,
on the other hand, is a measure of how many positively predicted
labels are positive. The F1-score represents the harmonic mean
of precision and recall values.

The classification accuracy and limit of detection (LOD) for
each ion are given in Table 3 and the accuracy in chloride and
sulfate is over 99%. LOD was calculated as 3.3*σ/m where σ is
the standard deviation of the intercept and m is the slope of the
calibration curve derived from the features. A confusion matrix
shows the classification performance in terms of true-false predic-
tions of the classifier as a table. The confusion matrix and error
bars graphs of chloride and sulfate are given in Figs. 3(a-b) and
(c-d) in varying concentrations of water quality, respectively. In
addition, the chloride confusion matrix in Fig. 3(a) shows that
our proposed approach only makes an error in the 0 mg/L con-
centration value, indicating the reliability of our approach. Eval-
uations of the KNN for other five ions (ammonium, carbonate,
nitrate, arsenic and sulfate) in terms of precision, recall and F1-
score are given in Tables S2-S6 and Figs. S2-S6, ESI. In addition,
confusion matrices are given in Figs. S7-S11, ESI.

In order to test the robustness, applicability, and adaptability of
the proposed approach, samples were taken from water sources
in 3 different districts (Balcova, Buca, and Kemalpasa) of Izmir
province. To perform qualitative comparative analysis, the classi-
fication results of these samples had to be validated with the ref-
erence results. In that sense, these samples were also measured
by visual test using a reference card and IC device. The classifica-
tion accuracy was calculated with respect to the visual test and IC
device, and the results are given in Table 4. The raw concentra-
tion data with illumination condition for each sample are given
in Tables S7-S9, ESI. Sample Images of ions given in Table 4 un-
der halogen, sunlight and fluorescent illumination conditions are
given in Table S10, ESI.

The proposed approach showed high performance for four
ions (ammonium, carbonate, chloride, nitrate); however, arsenic,
iron, and sulfate ions could not be detected due to the low
amounts of presence in the water. Table 4 shows that visual test
scores are lower than those of the IC device, proving that the per-
formance of the proposed classifier is closer to the IC device. Note
that visual test is more prone to error due to human-inference
while IC device gives more accurate results as expected. There-
fore, it can be concluded that the proposed approach easily out-
performs the visual test, although it may perform similarly to the
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(a) (b)

(c) (d)

Fig. 3 Confusion matrices and error bars of chloride (a-b) and sulfate (c-d) in varying concentrations of water quality, respectively.

IC device in some ions such as chloride.
Finally, the KNN classifier was integrated with Hydro Sens,

a simple and user-friendly mobile application to monitor water
quality. Screen-shots of the application are shown in Fig. 4. First,
the image is selected from the gallery or captured using the cam-
era. The ROI is cropped to transfer via Firebase to the remote
server (MATLAB) running the ML classifier. The concentration
level of the ions in water is classified and the result is returned
and displayed in Hydro Sens application. Finally, Hydro Sens cor-
rectly classified the carbonate ion concentration as 285 mg/L, as
shown in Fig. 4(h). Flow chart of the proposed water monitoring
was also given Fig. S12, ESI.

One method to improve the sensitivity of machine learning is to
expand the dataset. Images can be captured under more illumina-
tion sources with different brands of smartphones and operating
systems. Data augmentation can then be used for further expan-
sion. Next, feature selection algorithms can be utilized to reduce
the number of features in training and testing. With these two
methods, both sensitivity and robustness of the machine learning
can be optimized.

The recent innovations in environmental monitoring, medi-
cal diagnosis, safety/quality control, and other applications are
based on integrating smartphone technology with the Internet
of Things, AI (e.g., machine learning, deep learning, neural net-
work, natural language processing), sixth-generation networks,
imaging algorithms, and wearable sensors14,18. A smartphone-
based oblique incidence reflectometer employs image analysis to

measure optical properties of tissues which is brand-dependent,
caused to be limited for input variations19. Common approach
in colorimetric analysis to use calibration curve20–22,25. How-
ever, the calibration curve performs better only in a controlled
environment. The change in conditions may cause a deviation
in the results as the equation derived from the calibration curve
is condition-dependent like illumination and camera sensors. To
overcome this issue, statistical methods have been employed in
discrimination of rice varieties23. However, statistical methods
are not robust enough as AI based methods. Here, machine learn-
ing has been employed in the proposed water monitoring to offer
robustness against the illumination variance and camera optics,
leading to inter-phone repeatability.

4 Conclusion
This study proposes a smartphone-based machine learning ap-
proach to monitor the water quality with colorimetric strips. The
classifiers were trained using features extracted from the im-
ages captured with five smartphones in eight lighting conditions,
which improved the robustness against the illumination variance
and camera optics, providing inter-phone repeatability. Among
the tested classifiers, KNN outperformed the others in classifica-
tion accuracy, with the lowest accuracy of 95.63 % for arsenic
and the highest accuracy of 99.95 % for chloride. In addition,
the proposed approach was evaluated with real water samples
using a reference color card and an IC system as ground truth
measurement. The results showed that the proposed approach
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4 Demonstration of colorimetric detection steps on the Hydro Sens application is presented. The homepage of the application is shown in (a).
An image is selected from the gallery or smartphone camera as shown in (b). The selected image is displayed in (c). An adjustable crop box is used
to crop the image in (d), and (e) shows the cropped patch, which is uploaded in (f) to be analyzed for ion in (g). Finally, the result is given in (h).
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showed comparative performance with an IC system in Balcova
distinct samples (97.85 %, chloride). Moreover, the proposed ap-
proach was integrated with our custom-designed Android appli-
cation (Hydro Sens), offering great potential for monitoring water
quality in remote settings without advanced equipment.
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